Journal of Information Technology Applications and Management
/
v.11
no.4
/
pp.1-23
/
2004
This study identifies communication patterns of groups using synchronous text communication medium for their group decision-making, and examines how these patterns are associated with creative solutions to problems. Our research suggests that certain communication behavior of groups, when appropriately organized, can be of help in enhancing creative production of outcomes. A qualitative study was conducted on communication patterns based on an analysis of text-based electronic conversation protocols. Specifically this research tried to overcome existing studies on electronic groups by focusing on interactive process of communication among participants. The major study conclusion; are: (1) The production of creative outcome may depend on the process or sequence of discussion among group members with synchronous text communication medium. That is, proper interactive responses and appropriate control of the discussion process are essential to obtain a high level of performance. (2) It is importantto make discuss rules based on meta-cognitive and interactive protocols in the early stage. Explicit rules relating to internal group processes as well as communication medium use are even more important to groups with electronic communication medium than face-to-face groups.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.11
no.1
/
pp.345-359
/
2017
Optical Character Recognition (OCR) that has been a main research topic of computer vision and artificial intelligence now extend its applications to detection of text area from video or image contents taken by camera devices and retrieval of text information from the area. This paper aims to implement a binarization algorithm that removes user intervention and provides robust performance to outdoor lights by using TopHat algorithm and channel transformation technique. In this study, we particularly concentrate on text information of outdoor signboards and validate our proposed technique using those data.
Text in images is one of the most important cues for understanding a scene. In this paper, we propose a novel approach based on interest points to localize text in natural scene images. The main ideas of this approach are as follows: first we used interest point detection techniques, which extract the corner points of characters and center points of edge connected components, to select candidate regions. Second, these candidate regions were verified by using tensor voting, which is capable of extracting perceptual structures from noisy data. Finally, area, orientation, and aspect ratio were used to filter out non-text regions. The proposed method was tested on the ICDAR 2003 dataset and images of wine labels. The experiment results show the validity of this approach.
The goal of this study is to review the major research trend on the convergence studies of AI and healthcare technologies. For the study, 15,260 English articles on AI and healthcare related topics were collected from Scopus for 55 years from 1963, and text mining techniques were conducted. As a result, seven key research topics were defined : "AI for Clinical Decision Support System (CDSS)", "AI for Medical Image", "Internet of Healthcare Things (IoHT)", "Big Data Analytics in Healthcare", "Medical Robotics", "Blockchain in Healthcare", and "Evidence Based Medicine (EBM)". The result of this study can be utilized to set up and develop the appropriate healthcare R&D strategies for the researchers and government. In this study, text mining techniques such as Text Analysis, Frequency Analysis, Topic Modeling on LDA (Latent Dirichlet Allocation), Word Cloud, and Ego Network Analysis were conducted.
This paper defines Normalized Term Frequency Weighting method for automatic text categorization by using Box-Cox, and then it applies automatic text categorization. Box-Cox transformation is statistical transformation method which makes normalized data. This paper applies that and suggests new term frequency weighting method. Because Normalized Term Frequency is different from every term compared by existing term frequency weighting method, it is general method more than fixed weighting method such as log or root. Normalized term frequency weighting method's reasonability has been proved though experiments, used 8000 newspapers divided in 4 groups, which resulted high categorization correctness in all cases.
Purpose - This is an exploratory study that aims to apply text mining techniques, which computationally extracts words from the large-scale text data, to legal documents to quantify trade claim contents and enables statistical analysis. Design/methodology - This is designed to verify the validity of the application of text mining techniques as a quantitative methodology for trade claim studies, that have relied mainly on a qualitative approach. The subjects are 81 cases of arbitration and court judgments from China published on the website of the UNCITRAL where the CISG was applied. Validation is performed by comparing the manually analyzed result with the automatically analyzed result. The manual analysis result is the cluster analysis wherein the researcher reads and codes the case. The automatic analysis result is an analysis applying text mining techniques to the result of the cluster analysis. Topic modeling and semantic network analysis are applied for the statistical approach. Findings - Results show that the results of cluster analysis and text mining results are consistent with each other and the internal validity is confirmed. And the degree centrality of words that play a key role in the topic is high as the between centrality of words that are useful for grasping the topic and the eigenvector centrality of the important words in the topic is high. This indicates that text mining techniques can be applied to research on content analysis of trade claims for statistical analysis. Originality/value - Firstly, the validity of the text mining technique in the study of trade claim cases is confirmed. Prior studies on trade claims have relied on traditional approach. Secondly, this study has an originality in that it is an attempt to quantitatively study the trade claim cases, whereas prior trade claim cases were mainly studied via qualitative methods. Lastly, this study shows that the use of the text mining can lower the barrier for acquiring information from a large amount of digitalized text.
Journal of the Korea Society of Computer and Information
/
v.14
no.6
/
pp.1-10
/
2009
Flash memory has the advantages of nonvolatile, low power consumption, light weight, and high endurance. This enables the flash memory to be utilized as a storage of mobile computing device such as PMP(Portable Multimedia Player). Potable device with a mass flash memory can store various multimedia data such as video, audio, or image. Typical index systems for mobile computer are inefficient to search a form of text like lyric or title. In this paper, we propose a new text index system, named EMTEX(Embedded Text Index). EMTEX has the following salient features. First, it uses a compression algorithm for embedded system. Second, if a new insert or delete operation is executed on the base table. EMTEX updates the text index immediately. Third, EMTEX considers the characteristics of flash memory to design insert, delete, and rebuild operations on the text index. Finally, EMTEX is executed as an upper layer of DBMS. Therefore, it is independent of the underlying DBMS. We evaluate the performance of EMTEX. The Experiment results show that EMTEX can outperform th conventional index systems such as Oracle Text and FT3.
In this paper, we propose a pill identification model using engraved text feature and image feature such as shape and color, and compare it with an identification model that does not use engraved text feature to verify the possibility of improving identification performance by improving recognition rate of the engraved text. The data consisted of 100 classes and used 10 images per class. The engraved text feature was acquired through Keras OCR based on deep learning and 1D CNN, and the image feature was acquired through 2D CNN. According to the identification results, the accuracy of the text recognition model was 90%. The accuracy of the comparative model and the proposed model was 91.9% and 97.6%. The accuracy, precision, recall, and F1-score of the proposed model were better than those of the comparative model in terms of statistical significance. As a result, we confirmed that the expansion of the range of feature improved the performance of the identification model.
Ha, Taehyun;Coh, Byoung-Youl;Lee, Mingook;Yun, Bitnari;Chun, Hong-Woo
Journal of Information Science Theory and Practice
/
v.10
no.spc
/
pp.86-95
/
2022
Online recruitment websites discuss job demands in various fields, and job postings contain detailed job specifications. Analyzing this text can elucidate the features that determine job salaries. Text embedding models can learn the contextual information in a text, and explainable artificial intelligence frameworks can be used to examine in detail how text features contribute to the models' outputs. We collected 733,625 job postings using the WORKNET API and classified them into low, mid, and high-range salary groups. A text embedding model that predicts job salaries based on the text in job postings was trained with the collected data. Then, we applied the SHapley Additive exPlanations (SHAP) framework to the trained model and discovered the significant words that determine each salary class. Several limitations and remaining words are also discussed.
Purpose The purpose of this paper is to develop a method to improve topic representation by incorporating the TextRank technique in Bertopic-based topic modeling and additional indicators for determining the optimal number of topics. Design/methodology/approach In this paper, we propose a method to extract important documents from documents assigned to each topic of a topic model using the TextRank technique, and to calculate secondary diversity and generate topic representations based on the results. First, we integrate the TextRank algorithm into the Bertopic-based topic modeling process to set local secondary labels for each topic. The secondary labels of each topic are derived through extractive summarization based on the TextRank algorithm. Second, we improve the accuracy of selecting the optimal number of topics by calculating the secondary diversity index based on the extractive summary results of each topic. Third, we improve the efficiency by utilizing ChatGPT when deriving the labels of each topic. Findings As a result of performing case analysis and analysis evaluation using the proposed method, it was confirmed that topic representation based on TextRank results generated more accurate topic labels and that the secondary diversity index was a more effective index for determining the optimal number of topics.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.