• Title/Summary/Keyword: Text data

Search Result 2,959, Processing Time 0.029 seconds

Comparative Analysis of Low Fertility Policy and the Public Perceptions using Text-Mining Methodology (텍스트 마이닝을 활용한 저출산 정책과 대중인식 비교)

  • Bae, Giryeon;Moon, HyunJeong;Lee, Jaeil;Park, Mina;Park, Arum
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.29-42
    • /
    • 2021
  • As the low fertility intensifies in Korea, this study investigated fundamental differences between the government's low fertility policy and public perception of it. To this end, we selected four times 'Aging Society and Population Policy' documents and news comments for two weeks immediately after announcement of the third and fourth Policy as analysis targets. Then we conducted word frequency analysis, co-occurrence analysis and CONCOR analysis. As a result of analyses, first, direct childcare support during the first and second periods, and a social structural approach during third and fourth periods were noticeable. Second, it was revealed that both policies and comments aim for the work-family compatibility in 'parenting'. Lastly it was showed public interest in environment of raising children and the critical mind to effectiveness of the policy. This study is meaningful in that it confirmed the public perception using big data analysis, and it will help improve the direction for the future low fertility policy.

A Suggestion of the Direction of Construction Disaster Document Management through Text Data Classification Model based on Deep Learning (딥러닝 기반 분류 모델의 성능 분석을 통한 건설 재해사례 텍스트 데이터의 효율적 관리방향 제안)

  • Kim, Hayoung;Jang, YeEun;Kang, HyunBin;Son, JeongWook;Yi, June-Seong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.5
    • /
    • pp.73-85
    • /
    • 2021
  • This study proposes an efficient management direction for Korean construction accident cases through a deep learning-based text data classification model. A deep learning model was developed, which categorizes five categories of construction accidents: fall, electric shock, flying object, collapse, and narrowness, which are representative accident types of KOSHA. After initial model tests, the classification accuracy of fall disasters was relatively high, while other types were classified as fall disasters. Through these results, it was analyzed that 1) specific accident-causing behavior, 2) similar sentence structure, and 3) complex accidents corresponding to multiple types affect the results. Two accuracy improvement experiments were then conducted: 1) reclassification, 2) elimination. As a result, the classification performance improved with 185.7% when eliminating complex accidents. Through this, the multicollinearity of complex accidents, including the contents of multiple accident types, was resolved. In conclusion, this study suggests the necessity to independently manage complex accidents while preparing a system to describe the situation of future accidents in detail.

Explorative Study on Movement Patterns in Uljin-gun and Samcheok-si Wildfire Event (경북 울진·강원 삼척 등 산불에 따른 인구 이동 패턴에 대한 탐색적 연구)

  • Jeong, Ji Hye;Hwang, Woosuk;Pyo, Kyungsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1805-1815
    • /
    • 2022
  • In 2022, wildfires broke out in Uljin-gun and Samcheok-si, which set the record for the longest forest fire in Korea, but there were no casualties. To protect local residents from wildfires, they must evacuate. Predicting the demand for evacuation in the event of wildfires is essential for the efficiency of disaster management. The purpose of this study is to analyze the human mobility patterns according to the occurrence of Uljin-gun and Samcheok-si wildfires. SKT floating population data was used in this study to analyze the human mobility patterns in Uljin-gun and Samcheok-si. The main findings are as follows. First, while the movement of the resident and visiting population decreased, the movement of the worker population was found to be similar to normal. Second, the resident population of Buk-myeon, Uljin-gun moved to the surrounding area to avoid the wildfires. Third, the region is an area judged to be safe from wildfires, and this mobility patterns are related to emergency disaster text messages. This study confirmed human mobility patterns of the population in the area where the wildfires through the floating population data, which is quantitative data. This suggests that it is important to guide residents to shelters through emergency text messages to minimize damage in the event of wildfires.

Social Perceptions and Attitudes toward the Elderly Shared Online: Focusing on Social Big Data Analysis (온라인상에서 공유되는 노인에 대한 사회적 인식과 태도: 소셜 빅데이터 분석을 중심으로)

  • An, Soontae;Lee, Hannah;Chung, Soondool
    • 한국노년학
    • /
    • v.41 no.4
    • /
    • pp.505-525
    • /
    • 2021
  • Purpose. The purpose of this study is to examine how the phrase "old person" are expressed and used in the online sphere. Based on the theoretical concept of stigma, this study investigates the images and attitudes in society toward the elderly, and the characteristics of hate speech aimed at the elderly. Method. This study conducted text mining based on social big data using anonymous conversations. Results. It was confirmed that the elderly images shared online were generally negative. The attitudes expressed toward them also tended to be negative due to the negative images that are propagated of the elderly. The hate speech relating to the elderly, in usages such as 'Teul-ttag' and 'Kon-dae', were mainly identified in comments that negatively evaluate the elderly, and these expressions demonstrate the depth of hate and discrimination towards the elderly who are considered burdensome by young people. Interestingly, the hateful expressions towards the elderly were found more with regard to issues related to politics and economics and not just any content about the elderly. Conclusions. This study discussed the ways and means to enhance inter-generational understanding and solidity.

A Study on the Factors Affecting Continuous Use of AI Speaker Using SNA (SNA를 이용한 AI 스피커 지속적 사용에 영향을 미치는 요인 분석 연구: 아마존 에코 리뷰 중심으로)

  • Kim, Young Bum;Cha, Kyung Jin
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.4
    • /
    • pp.95-118
    • /
    • 2021
  • As the AI speaker business has risen significantly in recent years, the potential for numerous uses of AI speakers has gotten a lot of attention. Consumers have created an environment in which they can express and share their experiences with products through various channels, resulting in a large number of reviews that leave consumers with a variety of candid opinions about their experiences, which can be said to be very useful in analyzing consumers' thoughts. Using this review data, this study aimed to examine the factors driving the continued use of AI speakers. Above all, it was determined whether the seven characteristics associated with the intention to adopt AI identified in prior studies appear in consumer reviews. Based on customer review data on Amazon.com, text mining and social network analysis were utilized to examine Amazon eco-products. CONCOR analysis was used to classify words with similar connectivity locations, and Connection centrality analysis was used to classify the factors influencing the continuous use of AI speakers, focusing on the connectivity between words derived by classifying review data into positive and negative reviews. Consumers regarded personality and closeness as the most essential characteristics impacting the continued usage of AI speakers as a result of the favorable review survey. These two parameters had a strong correlation with other variables, and connectedness, in addition to the components established from prior studies, was a significant factor. Furthermore, additional negative review research revealed that recognition failures and compatibility are important problems that deter consumers from utilizing AI speakers. This study will give specific solutions for consumers to continue to utilize Amazon eco products based on the findings of the research.

Threat Situation Determination System Through AWS-Based Behavior and Object Recognition (AWS 기반 행위와 객체 인식을 통한 위협 상황 판단 시스템)

  • Ye-Young Kim;Su-Hyun Jeong;So-Hyun Park;Young-Ho Park
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.4
    • /
    • pp.189-198
    • /
    • 2023
  • As crimes frequently occur on the street, the spread of CCTV is increasing. However, due to the shortcomings of passively operated CCTV, the need for intelligent CCTV is attracting attention. Due to the heavy system of such intelligent CCTV, high-performance devices are required, which has a problem in that it is expensive to replace the general CCTV. To solve this problem, an intelligent CCTV system that recognizes low-quality images and operates even on devices with low performance is required. Therefore, this paper proposes a Saying CCTV system that can detect threats in real time by using the AWS cloud platform to lighten the system and convert images into text. Based on the data extracted using YOLO v4 and OpenPose, it is implemented to determine the risk object, threat behavior, and threat situation, and calculate the risk using machine learning. Through this, the system can be operated anytime and anywhere as long as the network is connected, and the system can be used even with devices with minimal performance for video shooting and image upload. Furthermore, it is possible to quickly prevent crime by automating meaningful statistics on crime by analyzing the video and using the data stored as text.

A Generation and Matching Method of Normal-Transient Dictionary for Realtime Topic Detection (실시간 이슈 탐지를 위한 일반-급상승 단어사전 생성 및 매칭 기법)

  • Choi, Bongjun;Lee, Hanjoo;Yong, Wooseok;Lee, Wonsuk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.5
    • /
    • pp.7-18
    • /
    • 2017
  • Recently, the number of SNS user has rapidly increased due to smart device industry development and also the amount of generated data is exponentially increasing. In the twitter, Text data generated by user is a key issue to research because it involves events, accidents, reputations of products, and brand images. Twitter has become a channel for users to receive and exchange information. An important characteristic of Twitter is its realtime. Earthquakes, floods and suicides event among the various events should be analyzed rapidly for immediately applying to events. It is necessary to collect tweets related to the event in order to analyze the events. But it is difficult to find all tweets related to the event using normal keywords. In order to solve such a mentioned above, this paper proposes A Generation and Matching Method of Normal-Transient Dictionary for realtime topic detection. Normal dictionaries consist of general keywords(event: suicide-death-loop, death, die, hang oneself, etc) related to events. Whereas transient dictionaries consist of transient keywords(event: suicide-names and information of celebrities, information of social issues) related to events. Experimental results show that matching method using two dictionary finds more tweets related to the event than a simple keyword search.

AI-based stuttering automatic classification method: Using a convolutional neural network (인공지능 기반의 말더듬 자동분류 방법: 합성곱신경망(CNN) 활용)

  • Jin Park;Chang Gyun Lee
    • Phonetics and Speech Sciences
    • /
    • v.15 no.4
    • /
    • pp.71-80
    • /
    • 2023
  • This study primarily aimed to develop an automated stuttering identification and classification method using artificial intelligence technology. In particular, this study aimed to develop a deep learning-based identification model utilizing the convolutional neural networks (CNNs) algorithm for Korean speakers who stutter. To this aim, speech data were collected from 9 adults who stutter and 9 normally-fluent speakers. The data were automatically segmented at the phrasal level using Google Cloud speech-to-text (STT), and labels such as 'fluent', 'blockage', prolongation', and 'repetition' were assigned to them. Mel frequency cepstral coefficients (MFCCs) and the CNN-based classifier were also used for detecting and classifying each type of the stuttered disfluency. However, in the case of prolongation, five results were found and, therefore, excluded from the classifier model. Results showed that the accuracy of the CNN classifier was 0.96, and the F1-score for classification performance was as follows: 'fluent' 1.00, 'blockage' 0.67, and 'repetition' 0.74. Although the effectiveness of the automatic classification identifier was validated using CNNs to detect the stuttered disfluencies, the performance was found to be inadequate especially for the blockage and prolongation types. Consequently, the establishment of a big speech database for collecting data based on the types of stuttered disfluencies was identified as a necessary foundation for improving classification performance.

Generating Sponsored Blog Texts through Fine-Tuning of Korean LLMs (한국어 언어모델 파인튜닝을 통한 협찬 블로그 텍스트 생성)

  • Bo Kyeong Kim;Jae Yeon Byun;Kyung-Ae Cha
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.3
    • /
    • pp.1-12
    • /
    • 2024
  • In this paper, we fine-tuned KoAlpaca, a large-scale Korean language model, and implemented a blog text generation system utilizing it. Blogs on social media platforms are widely used as a marketing tool for businesses. We constructed training data of positive reviews through emotion analysis and refinement of collected sponsored blog texts and applied QLoRA for the lightweight training of KoAlpaca. QLoRA is a fine-tuning approach that significantly reduces the memory usage required for training, with experiments in an environment with a parameter size of 12.8B showing up to a 58.8% decrease in memory usage compared to LoRA. To evaluate the generative performance of the fine-tuned model, texts generated from 100 inputs not included in the training data produced on average more than twice the number of words compared to the pre-trained model, with texts of positive sentiment also appearing more than twice as often. In a survey conducted for qualitative evaluation of generative performance, responses indicated that the fine-tuned model's generated outputs were more relevant to the given topics on average 77.5% of the time. This demonstrates that the positive review generation language model for sponsored content in this paper can enhance the efficiency of time management for content creation and ensure consistent marketing effects. However, to reduce the generation of content that deviates from the category of positive reviews due to elements of the pre-trained model, we plan to proceed with fine-tuning using the augmentation of training data.

Recommender system using BERT sentiment analysis (BERT 기반 감성분석을 이용한 추천시스템)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.1-15
    • /
    • 2021
  • If it is difficult for us to make decisions, we ask for advice from friends or people around us. When we decide to buy products online, we read anonymous reviews and buy them. With the advent of the Data-driven era, IT technology's development is spilling out many data from individuals to objects. Companies or individuals have accumulated, processed, and analyzed such a large amount of data that they can now make decisions or execute directly using data that used to depend on experts. Nowadays, the recommender system plays a vital role in determining the user's preferences to purchase goods and uses a recommender system to induce clicks on web services (Facebook, Amazon, Netflix, Youtube). For example, Youtube's recommender system, which is used by 1 billion people worldwide every month, includes videos that users like, "like" and videos they watched. Recommended system research is deeply linked to practical business. Therefore, many researchers are interested in building better solutions. Recommender systems use the information obtained from their users to generate recommendations because the development of the provided recommender systems requires information on items that are likely to be preferred by the user. We began to trust patterns and rules derived from data rather than empirical intuition through the recommender systems. The capacity and development of data have led machine learning to develop deep learning. However, such recommender systems are not all solutions. Proceeding with the recommender systems, there should be no scarcity in all data and a sufficient amount. Also, it requires detailed information about the individual. The recommender systems work correctly when these conditions operate. The recommender systems become a complex problem for both consumers and sellers when the interaction log is insufficient. Because the seller's perspective needs to make recommendations at a personal level to the consumer and receive appropriate recommendations with reliable data from the consumer's perspective. In this paper, to improve the accuracy problem for "appropriate recommendation" to consumers, the recommender systems are proposed in combination with context-based deep learning. This research is to combine user-based data to create hybrid Recommender Systems. The hybrid approach developed is not a collaborative type of Recommender Systems, but a collaborative extension that integrates user data with deep learning. Customer review data were used for the data set. Consumers buy products in online shopping malls and then evaluate product reviews. Rating reviews are based on reviews from buyers who have already purchased, giving users confidence before purchasing the product. However, the recommendation system mainly uses scores or ratings rather than reviews to suggest items purchased by many users. In fact, consumer reviews include product opinions and user sentiment that will be spent on evaluation. By incorporating these parts into the study, this paper aims to improve the recommendation system. This study is an algorithm used when individuals have difficulty in selecting an item. Consumer reviews and record patterns made it possible to rely on recommendations appropriately. The algorithm implements a recommendation system through collaborative filtering. This study's predictive accuracy is measured by Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Netflix is strategically using the referral system in its programs through competitions that reduce RMSE every year, making fair use of predictive accuracy. Research on hybrid recommender systems combining the NLP approach for personalization recommender systems, deep learning base, etc. has been increasing. Among NLP studies, sentiment analysis began to take shape in the mid-2000s as user review data increased. Sentiment analysis is a text classification task based on machine learning. The machine learning-based sentiment analysis has a disadvantage in that it is difficult to identify the review's information expression because it is challenging to consider the text's characteristics. In this study, we propose a deep learning recommender system that utilizes BERT's sentiment analysis by minimizing the disadvantages of machine learning. This study offers a deep learning recommender system that uses BERT's sentiment analysis by reducing the disadvantages of machine learning. The comparison model was performed through a recommender system based on Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units). As a result of the experiment, the recommender system based on BERT was the best.