Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.12
no.6
/
pp.589-598
/
2000
The vapor-liquid equilibrium and miscibility measurement apparatus was developed and used to obtain data for refrigerant/oil mixture. The vapor-liquid equilibrium and miscibility data for R-410a/POE32 and R-410A/POE46 oil mixtures are obtained over the temperature range from -20 to $60^{\circ}C\;with\;10^{\circ}C$ intervals and the oil concentration range from 0 to 90 wt%. Using the experimental data, an empirical model is developed to predict the temperature-pressure-concentration relations for R-410A/POE oil mixtures at equilibrium. In the R-410A/POE32 oil mixture, the average root-mean-square deviation between measured data and calculated results from the empirical model is 2.00% and in the R-410a/POE46 oil mixture, that is 3.69%. Flory-Huggins theory is also used to predict refrigerant/oil mixture behavior. Miscibility for R-410A/POE32 oil mixture was observed all over the experimental conditions. Immiscibility for R-410A/POE46 oil mixture was observed at the low oil concentrations(10~30 wt%).
The Transactions of the Korea Information Processing Society
/
v.7
no.2
/
pp.536-541
/
2000
Turbo code has excellent decoding performance but had limitations for real time communications because of the system complexity and time delay in decoding procedure. To overcome this problem, a new SRI(Semi-Random Interleaver) algorithm which realize the reduction of the interleaver size is proposed for reducing the time delay during the decoding prodedure. SRI compose the interleaver 0.5 size from the input data sequence. In writing the interleaver, data is recorded by row such as block interleaver. But, in reading, data is read by randomly and the text data is located by the just address simultaneously. Therefore, the processing time of with the preexisting method such as block, helical random interleaver.
Proceedings of the Korean Society of Crop Science Conference
/
1998.10a
/
pp.415-445
/
1998
For effective prevention of the spreading and outbreak of crop insects and disease pests, an intensive Pest surveillance system was established to predict their density changes, and distribution. After their initial establishment by either immigration or overwintering, it is necessary to anticipate how they spread out geographically and predict where/when outbreaks are possible. The two major tools, boundary layer atmospheric model (Blayer) and the geographic information system(GIS), have been being developed to facilitate the prediction of pest occurrence in recent days. We are also developing the PeMos (Pest Monitoring System) that is able to manage the pest surveillance data collected from 152 pest monitoring stations in Korea. These three system related to the pest surveillance should be integrated into an internet based comprehensive database management system to facilitate information resources systematically organized and closely linked. Considering various data types and large data size in each system, a new special information management system is suggested. The integrated system should express complex types of information, such as text, multimedia, and other scientific data under the Internet environment. This paper discussed the major three systems, GIS, Blayer, and PeMos, relevant to the crop pest surveillance, then how they can be integrated in a comprehensive system under the Internet environment.
Sequential Pattern Mining is the mining approach which addresses the problem of discovering the existent maximal frequent sequences in a given databases. In the daily and scientific life, sequential data are available and used everywhere based on their representative forms as text, weather data, satellite data streams, business transactions, telecommunications records, experimental runs, DNA sequences, histories of medical records, etc. Discovering sequential patterns can assist user or scientist on predicting coming activities, interpreting recurring phenomena or extracting similarities. For the sake of that purpose, the core of sequential pattern mining is finding the frequent sequence which is contained frequently in all data sequences. Beside the discovery of frequent itemsets, sequential pattern mining requires the arrangement of those itemsets in sequences and the discovery of which of those are frequent. So before mining sequences, the main task is checking if one sequence is a subsequence of another sequence in the database. In this paper, we implement the subsequence matching method as the preprocessing step for sequential pattern mining. Matched sequences in our implementation are the normalized sequences as the form of number chain. The result which is given by this method is the review of matching information between input mapped sequences.
The Journal of Economics, Marketing and Management
/
v.9
no.1
/
pp.1-14
/
2021
Purpose: The article deals with the proposition that consumers' fashion consumption behavior will still follow the consumption behavior of fast fashion, despite recognizing the importance of slow fashion. Research design, data and methodology: The research model to verify this proposition is topic modelling with big data including unstructured textual data. we combined 5,506 news articles posted on Naver news search platform during the 2003-2019 period about fast fashion and slow fashion, high-frequency words have been derived, and topics have been found using LDA model. Based on these, we examined consumers' perception and consumption behavior on slow fashion through the analysis of Topic Network. Results: (1) Looking at the status of annual article collection, consumers' interest in slow fashion mainly began in 2005 and showed a steady increase up to 2019. (2) Term Frequency analysis showed that the keywords for slow fashion are the lowest, with consumers' consumption patterns continuing around 'brand.' (3) Each topic's weight in articles showed that 'social value' - which includes slow fashion - ranked sixth among the 9 topics, low linkage with other topics. (4) Lastly, 'brand' and 'fashion trend' were key topics, and the topic 'social value' accounted for a low proportion. Conclusion: Slow fashion was not a considerable factor of consumption behavior. Consumption patterns in fashion sector are still dominated by general consumption patterns centered on brands and fast fashion.
International Journal of Internet, Broadcasting and Communication
/
v.14
no.2
/
pp.206-211
/
2022
As the level of consumption is improved and cultural life is pursued, the consumer's consciousness structure is rapidly changing, and the demand for product selection level, variety, and quality is becoming more diverse. The restaurant economy is falling due to the prolonged COVID-19, the economic recession, income decline, and changes in population structure and lifestyle, but the Meal- kit market is growing rapidly. This study aims to identify the consumer perception of Meal-kit, which is rapidly growing as an alternative to existing meals in the fields of dining out, food, and distribution due to the development of technology and social environment using big data. As a result of the analysis, the keywords with the highest frequency of appearance were in the order of Meal-kit, Cooking, Product, Launching, and Market and were divided into 8 groups through the CONCOR analysis. We want to identify consumer trends related to the key keywords of Meal-kit, present effective data related to Meal-kit demand for Meal-kit specialized companies, and provide implications for establishing marketing strategies for differentiated competitive advantage.
KIPS Transactions on Software and Data Engineering
/
v.11
no.5
/
pp.203-210
/
2022
As more and more research and companies use health care data, efforts are being made to vitalize health care data worldwide. However, the system and format used by each institution is different. Therefore, this research established a basic model to classify text data onto multiple institutions according to the type of the future by establishing a basic model to classify the types of medical records of the EEG Report. For EEG Report classification, four deep learning-based algorithms were compared. As a result of the experiment, the ANN model trained by vectorizing with One-Hot Encoding showed the highest performance with an accuracy of 71%.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.12
/
pp.3868-3888
/
2022
A widely used social networking service like Twitter has the ability to disseminate information to large groups of people even during a pandemic. At the same time, it is a convenient medium to share irrelevant and unverified information online and poses a potential threat to society. In this research, conventional machine learning algorithms are analyzed to classify the data as either non-rumor data or rumor data. Machine learning techniques have limited tuning capability and make decisions based on their learning. To tackle this problem the authors propose a deep learning-based Rumor Detection Neural Network model to predict the rumor tweet in real-world events. This model comprises three layers, AttCNN layer is used to extract local and position invariant features from the data, AttBi-LSTM layer to extract important semantic or contextual information and HPOOL to combine the down sampling patches of the input feature maps from the average and maximum pooling layers. A dataset from Kaggle and ground dataset #gaja are used to train the proposed Rumor Detection Neural Network to determine the veracity of the rumor. The experimental results of the RDNN Classifier demonstrate an accuracy of 93.24% and 95.41% in identifying rumor tweets in real-time events.
International Journal of Internet, Broadcasting and Communication
/
v.14
no.3
/
pp.85-90
/
2022
In this study, keywords from representative online portal sites such as NAVER, Google, and Youtube were collected based on text mining analysis technique using TEXTOM to check the changes in the restaurant industry before and after COVID-19. The collection keywords were selected as dining out, food service industry, and dining out culture. For the collected data, the top 30 words were derived, respectively, through the refinement process. In addition, comparative analysis was conducted by defining data from 2018 to 2019 before COVID-19, and from 2020 to 2021 after COVID-19. As a result, 8272 keywords before COVID-19 and 9654 keywords after COVID-19, a total of 17926 keywords, were derived. In order for the food service industry to develop after the COVID-19 pandemic, it is necessary to commercialize the recipes of restaurants to revitalize the distribution of home-use food products that replace home-cooked meals such as meal kits. Due to the social distancing caused by COVID-19, the dining out culture has changed and the trend has changed, and it has been confirmed that the consumption culture has changed to eating and delivering at home more safely than visiting restaurants. In addition, it has been confirmed that the consumption culture of existing consumers is changing to a trend of cooking at home rather than visiting restaurants.
The purpose of this study is to examine consumers' perceptions of domestic infertility support policies based on infertility-related keywords and the trends of their changes. To this end, Momsholic, a mom cafe which has the most active infertility-related bulletin boards on Naver, was selected as the analysis target, and 'infertility' was selected as a keyword for data search. The data was collected for three months. In addition, network analysis and visualization were performed using R for data collection and analysis, and cross-validation was attempted using the NetDraw function of 'textom 1.0' and the UCINET6 program. As a result of the analysis, the main keywords were cost, artificial insemination, in vitro fertilization, freezing, harvest, ovulation, and how much. Next, looking at the central value of the degree of connection, it was found that the degree of connection between the words cost, cost, how much, problem, public health center, and artificial insemination was high. According to the results of this study, women who visit mom cafes due to infertility in Korea are more interested in the cost. It is believed to be closely related to infertility treatment as well as in vitro fertilization and egg freezing. Therefore, by examining keywords related toinfertility, it has academic significance in that it is possible to identify major factors that end users are interested in. Furthermore, it is possible to redefine the guidelines for domestic infertility support policies by presenting infertility support policies that reflect the factors of interest of end consumers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.