International Journal of Internet, Broadcasting and Communication
/
v.14
no.4
/
pp.52-57
/
2022
In this study, keywords from representative online portal sites such as Naver, Google, and Youtube were collected based on text mining analysis technique using Textom to check the changes in metqaverse after COVID-19. before Corona, it was confirmed that social media platforms such as Kakao Talk, Facebook, and Twitter were mentioned, and among the four metaverse, consumer awareness was still concentrated in the field of life logging. However, after Corona, keywords from Roblox, Fortnite, and Geppetto appeared, and keywords such as Universe, Space, Meta, and the world appeared, so Metaverse was recognized as a virtual world. As a result, it was confirmed that consumer perception changed from the life logging of Metaverse to the mirror world. Third, keywords such as cryptocurrency, cryptocurrency, coin, and exchange appeared before Corona, and the word frequency ranking for blockchain, which is an underlying technology, was high, but after Corona, the word frequency ranking fell significantly as mentioned above.
There are various typing practice applications. In addition, research cases on learning applications that support typing practice have been reported. These services are usually provided in a way that utilizes their own built-in text. Learners collect various contents through web services and use them a lot for learning. Therefore, this paper proposes a learning application to increase the learning effect by collecting vast amounts of web content and applying it to typing practice. The proposed application is implemented using Tkinter, a GUI module of Python. BeautifulSoup module of Python is used to extract information from the web. In order to process the extracted data, the NLTK module, which is an English data preprocessor, and the KoNLPy module, which is a Korean language processing module, are used. The operation of the proposed function is verified in the implementation and experimental results.
International Journal of Advanced Culture Technology
/
v.10
no.4
/
pp.412-419
/
2022
The amount of digital text data is growing exponentially, and many machine learning solutions are being used to monitor and manage this data. Artificial intelligence and machine learning are used in many areas of our daily lives, but the underlying processes and concepts are not easy for most people to understand. At a time when many experts are needed to run a machine learning solution, no-code machine learning tools are a good solution. No-code machine learning tools is a platform that enables machine learning functions to be performed without engineers or developers. The latest No-Code machine learning tools run in your browser, so you don't need to install any additional software, and the simple GUI interface makes them easy to use. Using these platforms can save you a lot of money and time because there is less skill and less code to write. No-Code machine learning tools make it easy to understand artificial intelligence and machine learning. In this paper, we examine No-Code machine learning tools and compare their features.
Over the past few years, fake news has become one of the most significant problems. Since it is impossible to prevent people from spreading misinformation, people should analyze the news themselves. However, this process takes some time and effort, so the routine part of this analysis should be automated. There are many different approaches to this problem, but they only analyze the text and messages, ignoring the images. The fake news problem should be solved using a complex analysis tool to reach better performance. In this paper, we propose the approach of training an Artificial Intelligence using an unsupervised learning algorithm, combined with online data parsing tools, providing independence from subjective data set. Therefore it will be more difficult to spread fake news since people could quickly check if the news or article is trustworthy.
텍스트 기반의 훈련 데이터는 데이터를 수집한 이후에 각 문자별로 태깅 작업이 필요하다. 말뭉치(Corpus)는 언어학에서 주로 이루고 있는 텍스트 집합이다. 말뭉치는 각 단어의 품사 표기에 대한 정보가 태그 형태로 되어 있다. 본 연구에서는 한국어 기반의 태깅 작업을 연구했으며, 기본 한국어 말뭉치가 아닌 기업이나 연구 기관에서 데이터를 수집하여 말뭉치나 별도 학습 데이터를 구축하기 위한 자동 태깅 방법에 대해 알아본다.
Credit scoring is a technique used by financial institutions to assess the creditworthiness of potential borrowers. This involves evaluating a borrower's credit history to predict the likelihood of defaulting on a loan. This paper presents an ensemble of two Transformer based models within a framework for discriminating the default risk of loan applications in the field of credit scoring. The first model is FinBERT, a pretrained NLP model to analyze sentiment of financial text. The second model is FT-Transformer, a simple adaptation of the Transformer architecture for the tabular domain. Both models are trained on the same underlying data set, with the only difference being the representation of the data. This multi-modal approach allows us to leverage the unique capabilities of each model and potentially uncover insights that may not be apparent when using a single model alone. We compare our model with two famous ensemble-based models, Random Forest and Extreme Gradient Boosting.
International journal of advanced smart convergence
/
v.12
no.4
/
pp.154-163
/
2023
With the rapid development of AI technology, ChatGPT and other AI content creation tools are becoming common, and users are becoming curious and adopting them. These tools, unlike search engines, generate results based on user prompts, which puts them at risk of inaccuracy or plagiarism. This allows unethical users to create inappropriate content and poses greater educational and corporate data security concerns. AI content detection is needed and AI-generated text needs to be identified to address misinformation and trust issues. Along with the positive use of AI tools, monitoring and regulation of their ethical use is essential. When detecting content created by AI with an AI content detection tool, it can be used efficiently by using the appropriate tool depending on the usage environment and purpose. In this paper, we collect data on AI content detection tools and compare and analyze the functions and characteristics of AI content detection tools to help meet these needs.
Technological innovation generates products, services, and processes that can disrupt existing industries and lead to the emergence of new fields. Distributed ledger technology, or blockchain, offers novel transparency, security, and anonymity characteristics in transaction data that may disrupt existing industries. However, research attention has largely examined its application to finance. Less is known of any broader applications, particularly in Industry 4.0. This study investigates academic research publications on blockchain and predicts emerging industries using academia-industry dynamics. This study adopts latent Dirichlet allocation and dynamic topic models to analyze large text data with a high capacity for dimensionality reduction. Prior studies confirm that research contributes to technological innovation through spillover, including products, processes, and services. This study predicts emerging industries that will likely incorporate blockchain technology using insights from the knowledge structure of publications.
This research focuses on processing unstructured data efficiently, containing various formulas in document processing and management regarding the terms and rules of domestic insurance documents using text mining techniques. Through parsing and compilation technology, document context, content, constants, and variables are automatically separated, and errors are verified in order of the document and logic to improve document accuracy accordingly. Through document debugging technology, errors in the document are identified in real time. Furthermore, it is necessary to predict the changes that intelligent document processing will bring to document management work, in particular, the impact on documents and utilization tasks that are double managed due to various formulas and prepare necessary capabilities in the future.
Taegeon Kim;Seokhwan Kim;Minkyu Koo;Minwoo Jeong;Hongjo Kim
International conference on construction engineering and project management
/
2024.07a
/
pp.415-422
/
2024
Recent advances in construction automation have led to increased use of deep learning-based computer vision technology for construction monitoring. However, monitoring systems based on supervised learning struggle with recognizing complex risk factors in construction environments, highlighting the need for adaptable solutions. Large multimodal models, pretrained on extensive image-text datasets, present a promising solution with their capability to recognize diverse objects and extract semantic information. This paper proposes a methodology that generates training data for multimodal models, including safety-centric descriptions using GPT-4V, and fine-tunes the LLaVA model using the LoRA method. Experimental results from seven construction site hazard scenarios show that the fine-tuned model accurately assesses safety status in images. These findings underscore the proposed approach's effectiveness in enhancing construction site safety monitoring and illustrate the potential of large multimodal models to tackle domain-specific challenges.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.