Journal of the Korea Institute of Building Construction
/
v.13
no.4
/
pp.333-340
/
2013
As construction projects become bigger, PMIS is being used as a project collaboration tool for project participants, owners, designers, inspectors and contractors. As the data type used in PMIS is usually text and most PMIS have no standard information classification system, there is a problem with data usability, such as the capacity for data search and analysis. BIM uses Objects and Properties, and this information might be used for relating with other construction information. As such, BIM technologies can be used with PMIS to enhance the data usability. The web environment is very convenient for multiple users, but the problem is that the data transfer speed is low for big files such as BIM model files. In this study, we suggested a Virtual Technology (VT) application to enhance the performance of BIM data exchange in PMIS, and tested and analyzed its efficiency when it is used to integrate BIM and PMIS in the web environment. The results of the study showed that VT can be used to enhance the efficiency of BIM data exchange in the web environment.
As the value of big data is recognized as important, it is possible to advance decision making by effectively introducing and improving the development and utilization of JAVA and R programs that can analyze vast amounts of existing and unstructured data to governments, public institutions and private businesses. In this study, news data was collated and analyzed through text mining techniques in order to establish marketing strategies based on consumers' airline preferences. This research is meaningful in establishing marketing strategies based on analysis results by analyzing consumers' airline preferences using high-level big data utilization program techniques for data that were difficult to obtain in the past.
A Web Crawler is a program, which is commonly used by search engines to find the new brainchild on the internet. The use of crawlers has made the web easier for users. In this paper, we have used unstructured data by structuralization to collect data from the web pages. Our system is able to choose the word near our keyword in more than one document using unstructured way. Neighbor data were collected on the keyword through word2vec. The system goal is filtered at the data acquisition level and for a large taxonomy. The main problem in text taxonomy is how to improve the classification accuracy. In order to improve the accuracy, we propose a new weighting method of TF-IDF. In this paper, we modified TF-algorithm to calculate the accuracy of unstructured data. Finally, our system proposes a competent web pages search crawling algorithm, which is derived from TF-IDF and RL Web search algorithm to enhance the searching efficiency of the relevant information. In this paper, an attempt has been made to research and examine the work nature of crawlers and crawling algorithms in search engines for efficient information retrieval.
Construction accidents are difficult to prevent because several different types of activities occur simultaneously. The current method of accident analysis only indicates the number of occurrences for one or two variables and accidents have not reduced as a result of safety measures that focus solely on individual variables. Even if accident data is analyzed to establish appropriate safety measures, it is difficult to derive significant results due to a large number of data variables, elements, and qualitative records. In this study, in order to simplify the analysis and approach this complex problem logically, data preprocessing techniques, such as latent class cluster analysis (LCCA) and predictor importance were used to discover the most influential variables. Finally, the correlation was analyzed using an alluvial flow diagram consisting of seven variables and fourteen elements based on accident data. The alluvial diagram analysis using reduced variables and elements enabled the identification of accident trends into four categories. The findings of this study demonstrate that complex and diverse construction accident data can yield relevant analysis results, assisting in the prevention of accidents.
Purpose - The purpose of this study was to examine the recent popular consumption trend, the hocance phenomenon, using social media big data. The study intended to present practical directions and marketing measures for the recovery and growth of the hotel industry after COVID-19 pandemic. Design/methodology/approach - Big data analysis has been used in various fields, and in this study, it was used to understand the hocance phenomenon. For three years from January 1, 2018 to December 31, 2020, we collected text data including the keyword 'hocance' from the blog and cafe of NAVER and Daum. TEXTOM and UCINET 6 were used to collect and analyze the data. Findings - According to the results of analysis, the words such as 'hocance', 'hotel', 'Seoul', 'travel', 'swimming pool', 'Incheon', 'breakfast', 'child' and 'friend' were identified with high frequency. The results of CONCOR analysis showed similar results in all three years. It has been confirmed that 'swimming pool', 'breakfast', 'child' and 'friend' are important when deciding on the hocance package. Research implications or Originality - The study was differentiated in that it used social media big data instead of traditional research methods. Furthermore, it reflected social phenomena as a consumption trend so there was practical value in establishing marketing strategies for the tourism and hotel industry.
Son, Jeong-Woo;Yoon, Heegeun;Park, Seong-Bae;Cho, Keeseong;Ryu, Won
ETRI Journal
/
v.36
no.5
/
pp.704-713
/
2014
Most natural language processing tasks depend on the outputs of some other tasks. Thus, they involve other tasks as subtasks. The main problem of this type of pipelined model is that the optimality of the subtasks that are trained with their own data is not guaranteed in the final target task, since the subtasks are not optimized with respect to the target task. As a solution to this problem, this paper proposes a consolidation of subtasks for a target task ($CST^2$). In $CST^2$, all parameters of a target task and its subtasks are optimized to fulfill the objective of the target task. $CST^2$ finds such optimized parameters through a backpropagation algorithm. In experiments in which text chunking is a target task and part-of-speech tagging is its subtask, $CST^2$ outperforms a traditional pipelined text chunker. The experimental results prove the effectiveness of optimizing subtasks with respect to the target task.
The Journal of Korean Association of Computer Education
/
v.17
no.2
/
pp.1-9
/
2014
In this paper, we study inquiry tendency in informatics textbooks for middle school students. These textbooks were written in accordance with 2009 revised national curriculum, and were adopted in schools starting from 2013. Romey analysis was implemented to analyze inquiry tendency in six textbooks using four different criteria-text, data, activity, evaluation. The results showed that some textbooks displayed a low level of inquiry tendency, lacking participation from students and employing an authoritative tone. Among four factors, the 'activity' displayed the highest degree of inquiry tendency while the 'text' retained the lowest level of inquiry tendency. The Romey measures in some sections were zero, thereby indicating room for improvement.
Newspaper reader mobile applications using text-to-speech (TTS) function enable blind people to read newspaper contents. But, tables cannot be easily read by the reader program because most of the tables are stored as images in the contents. Even though we try to use OCR (Optical character reader) programs to recognize letters from the table images, it cannot be simply applied to the table reading function because the table structure is unknown to the readers. Therefore, identification of exact location of each table cell that contains the text of the table is required beforehand. In this paper, we propose an efficient image processing algorithm to recognize all the cells in tables by identifying columns and rows in table images. From the cell location data provided by the table column and row identification algorithm, we can generate table structure information and table reading scenarios. Our experimental results with table images found commonly in newspapers show that our cell identification approach has 100% accuracy for simple black and white table images and about 99.7% accuracy for colored and complicated tables.
KIPS Transactions on Software and Data Engineering
/
v.3
no.4
/
pp.149-154
/
2014
A user should pick up relevant answers by himself from various search results when using user participation question answering community like Knowledge-iN. If refined answers are automatically provided, usability of question answering community must be improved. This paper divides questions in Q&A documents into 4 types(word, list, graph and text), then proposes summarizing methods for each question type using document statistics. Summarized answers for word, list and text type are obtained by question clustering and calculating scores for words using frequency, proximity and confidence of answers. Answers for graph type is shown by extracting user opinion from answers.
각종 사이버 범죄가 증가함에 따라 실시간 모니터링을 통한 사전 탐지 기술뿐만 아니라, 사후 원인 분석을 통한 사고 재발 방지 기술의 중요성이 증가하고 있다. 사후 분석은 시스템에서 생산된 다양한 유형의 대용량 로그를 기반으로 분석가가 보안 위협 과정을 규명하는 것으로 이를 지원하는 다양한 상용 및 오픈 소스 SW 존재하나, 대부분 단일 분석가 PC에서 운용되는 파일 기반 SW로 대용량 데이터에 대한 분석 성능 저하, 다수 분석가 간의 데이터 공유 불가, 통계 연관 분석 한계 및 대화형 점진적 내용 분석 불가 등의 문제점을 해결하지 못하고 있다. 이러한 문제점을 해결하기 위하여 고성능 인메모리 관계형 데이터베이스 시스템을 로그 스토리지로 활용하는 대용량 로그 분석 SW 개발하였다. 특히, 기 확보된 공격자 프로파일을 활용하여 공격의 유무를 확인하는 텍스트 패턴 매칭 연산은 전통적인 관계형 데이터베이스 시스템의 FTS(Full-Text Search) 기능 활용이 가능하나, 대용량 전용 색인 생성에 따른 비현실적인 DB 구축 소요 시간과 최소 3배 이상의 DB 용량 증가로 인한 시스템 리소스 추가 요구 등의 단점이 있다. 본 논문에서는 인메모리 관계형 데이터베이스 시스템 기반 효율적인 텍스트 패턴 매칭 연산을 위하여, 고성능의 대용량 로그 DB 적재 방법과 새로운 유형의 패턴 매칭 방법을 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.