• Title/Summary/Keyword: Text Retrieval

Search Result 344, Processing Time 0.027 seconds

Development of an Automated ESG Document Review System using Ensemble-Based OCR and RAG Technologies

  • Eun-Sil Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.25-37
    • /
    • 2024
  • This study proposes a novel automation system that integrates Optical Character Recognition (OCR) and Retrieval-Augmented Generation (RAG) technologies to enhance the efficiency of the ESG (Environmental, Social, and Governance) document review process. The proposed system improves text recognition accuracy by applying an ensemble model-based image preprocessing algorithm and hybrid information extraction models in the OCR process. Additionally, the RAG pipeline optimizes information retrieval and answer generation reliability through the implementation of layout analysis algorithms, re-ranking algorithms, and ensemble retrievers. The system's performance was evaluated using certificate images from online portals and corporate internal regulations obtained from various sources, such as the company's websites. The results demonstrated an accuracy of 93.8% for certification reviews and 92.2% for company regulations reviews, indicating that the proposed system effectively supports human evaluators in the ESG assessment process.

An Efficient Frequent Melody Indexing Method to Improve Performance of Query-By-Humming System (허밍 질의 처리 시스템의 성능 향상을 위한 효율적인 빈번 멜로디 인덱싱 방법)

  • You, Jin-Hee;Park, Sang-Hyun
    • Journal of KIISE:Databases
    • /
    • v.34 no.4
    • /
    • pp.283-303
    • /
    • 2007
  • Recently, the study of efficient way to store and retrieve enormous music data is becoming the one of important issues in the multimedia database. Most general method of MIR (Music Information Retrieval) includes a text-based approach using text information to search a desired music. However, if users did not remember the keyword about the music, it can not give them correct answers. Moreover, since these types of systems are implemented only for exact matching between the query and music data, it can not mine any information on similar music data. Thus, these systems are inappropriate to achieve similarity matching of music data. In order to solve the problem, we propose an Efficient Query-By-Humming System (EQBHS) with a content-based indexing method that efficiently retrieve and store music when a user inquires with his incorrect humming. For the purpose of accelerating query processing in EQBHS, we design indices for significant melodies, which are 1) frequent melodies occurring many times in a single music, on the assumption that users are to hum what they can easily remember and 2) melodies partitioned by rests. In addition, we propose an error tolerated mapping method from a note to a character to make searching efficient, and the frequent melody extraction algorithm. We verified the assumption for frequent melodies by making up questions and compared the performance of the proposed EQBHS with N-gram by executing various experiments with a number of music data.

Antecedent Decision Rules of Personal Pronouns for Coreference Resolution (Coreference Resolution을 위한 3인칭 대명사의 선행사 결정 규칙)

  • Kang, Seung-Shik;Yun, Bo-Hyun;Woo, Chong-Woo
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.227-232
    • /
    • 2004
  • When we extract a representative term from text for information retrieval system or a special information for information retrieval and text milling system, we often need to solve the anaphora resolution problem. The antecedent decision problem of a pronoun is one of the major issues for anaphora resolution. In this paper, we are suggesting a method of deciding an antecedent of the third personal pronouns, such as “he/she/they” to analyze the contents of documents precisely. Generally, the antecedent of the third personal Pronouns seem to be the subject of the current statement or previous statement, and also it occasionally happens more than twice. Based on these characteristics, we have found rules for deciding an antecedent, by investigating a case of being an antecedent from the personal pronouns, which appears in the current statement and the previous statements. Since the heuristic rule differs on the case of the third personal pronouns, we described it as subjective case, objective case, and possessive case based on the case of the pronouns. We collected 300 sentences that include a pronoun from the newspaper articles on political issues. The result of our experiment shows that the recall and precision ratio on deciding the antecedent of the third personal pronouns are 79.0% and 86.8%, respectively.

Investigation of Topic Trends in Computer and Information Science by Text Mining Techniques: From the Perspective of Conferences in DBLP (텍스트 마이닝 기법을 이용한 컴퓨터공학 및 정보학 분야 연구동향 조사: DBLP의 학술회의 데이터를 중심으로)

  • Kim, Su Yeon;Song, Sung Jeon;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.32 no.1
    • /
    • pp.135-152
    • /
    • 2015
  • The goal of this paper is to explore the field of Computer and Information Science with the aid of text mining techniques by mining Computer and Information Science related conference data available in DBLP (Digital Bibliography & Library Project). Although studies based on bibliometric analysis are most prevalent in investigating dynamics of a research field, we attempt to understand dynamics of the field by utilizing Latent Dirichlet Allocation (LDA)-based multinomial topic modeling. For this study, we collect 236,170 documents from 353 conferences related to Computer and Information Science in DBLP. We aim to include conferences in the field of Computer and Information Science as broad as possible. We analyze topic modeling results along with datasets collected over the period of 2000 to 2011 including top authors per topic and top conferences per topic. We identify the following four different patterns in topic trends in the field of computer and information science during this period: growing (network related topics), shrinking (AI and data mining related topics), continuing (web, text mining information retrieval and database related topics), and fluctuating pattern (HCI, information system and multimedia system related topics).

A Study on the Research Trends in Domestic/International Information Science Articles by Co-word Analysis (동시출현단어 분석을 통한 국내외 정보학 학회지 연구동향 파악)

  • Kim, Ha Jin;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.31 no.1
    • /
    • pp.99-118
    • /
    • 2014
  • This paper carried out co-word analysis of noun and noun phrase using text-mining technique in order to grasp the research trends on domestic and international information science articles. It was conducted based on collected titles and articles of the papers published in the Journal of the Korean Society for Information Management (KOSIM) and Journal of American Society for Information Science and Technology (JASIST) from 1990 to 2013. By dividing whole period into five publication window, this paper was organized into the following processes: 1) analysis of high frequency co-word pair to examine the overall trends of both information science articles 2) analysis of each word appearing with high frequency keyword to grasp the detailed subject 3) focused network analysis of trend after 2010 when distinctively new keyword appeared. The result of the analysis shows that KOSIM has considerable portion of studies conducted regarding topics such as library, information service, information user and information organization. Whereas, JASIST has focused on studies regarding information retrieval, information user, web information, and bibliometrics.

A Rule-based Approach to Identifying Citation Text from Korean Academic Literature (한국어 학술 문헌의 본문 인용문 인식을 위한 규칙 기반 방법)

  • Kang, In-Su
    • Journal of the Korean Society for information Management
    • /
    • v.29 no.4
    • /
    • pp.43-60
    • /
    • 2012
  • Identifying citing sentences from article full-text is a prerequisite for creating a variety of future academic information services such as citation-based automatic summarization, automatic generation of review articles, sentiment analysis of citing statements, information retrieval based on citation contexts, etc. However, finding citing sentences is not easy due to the existence of implicit citing sentences which do not have explicit citation markers. While several methods have been proposed to attack this problem for English, it is difficult to find such automatic methods for Korean academic literature. This article presents a rule-based approach to identifying Korean citing sentences. Experiments show that the proposed method could find 30% of implicit citing sentences in our test data in nearly 70% precision.

Building a Philosophy Ontology based on Content of Texts and its Application to Learning (텍스트 내용 기반의 철학 온톨로지 구축 및 교육에의 응용)

  • Chung, Hyun-Sook;Choi, Byung-Il
    • Journal of The Korean Association of Information Education
    • /
    • v.9 no.2
    • /
    • pp.257-270
    • /
    • 2005
  • Researchers of humane studies including philosophy acquire knowledge from understanding of their texts. They spent a lot time and efforts to retrieve, read and understand many texts relevant to their research fields using a metadata-based text retrieval system. In this paper, we develop a philosophy ontology that enables researchers to retrieve knowledge in the content of texts of philosophy. Our philosophy ontology includes concepts and their hierarchical and associative relationships defined by philosophy researchers. We propose a methodology for constructing text-based ontology comprised of three phases and fourteen steps. This methodology may be used to construct another ontologies for learning. Also, we introduce a case study for applying our philosophy ontology to acquire and interchange knowledge of philosophy between a professor and students during philosophy classes.

  • PDF

A Study on the Law2Vec Model for Searching Related Law (연관법령 검색을 위한 워드 임베딩 기반 Law2Vec 모형 연구)

  • Kim, Nari;Kim, Hyoung Joong
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1419-1425
    • /
    • 2017
  • The ultimate goal of legal knowledge search is to obtain optimal legal information based on laws and precedent. Text mining research is actively being undertaken to meet the needs of efficient retrieval from large scale data. A typical method is to use a word embedding algorithm based on Neural Net. This paper demonstrates how to search relevant information, applying Korean law information to word embedding. First, we extracts reference laws from precedents in order and takes reference laws as input of Law2Vec. The model learns a law by predicting its surrounding context law. The algorithm then moves over each law in the corpus and repeats the training step. After the training finished, we could infer the relationship between the laws via the embedding method. The search performance was evaluated based on precision and the recall rate which are computed from how closely the results are associated to the search terms. The test result proved that what this paper proposes is much more useful compared to existing systems utilizing only keyword search when it comes to extracting related laws.

Wine Label Recognition System using Image Similarity (이미지 유사도를 이용한 와인라벨 인식 시스템)

  • Jung, Jeong-Mun;Yang, Hyung-Jeong;Kim, Soo-Hyung;Lee, Guee-Sang;Kim, Sun-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.125-137
    • /
    • 2011
  • Recently the research on the system using images taken from camera phones as input is actively conducted. This paper proposed a system that shows wine pictures which are similar to the input wine label in order. For the calculation of the similarity of images, the representative color of each cell of the image, the recognized text color, background color and distribution of feature points are used as the features. In order to calculate the difference of the colors, RGB is converted into CIE-Lab and the feature points are extracted by using Harris Corner Detection Algorithm. The weights of representative color of each cell of image, text color and background color are applied. The image similarity is calculated by normalizing the difference of color similarity and distribution of feature points. After calculating the similarity between the input image and the images in the database, the images in Database are shown in the descent order of the similarity so that the effort of users to search for similar wine labels again from the searched result is reduced.

Terminology Recognition System based on Machine Learning for Scientific Document Analysis (과학 기술 문헌 분석을 위한 기계학습 기반 범용 전문용어 인식 시스템)

  • Choi, Yun-Soo;Song, Sa-Kwang;Chun, Hong-Woo;Jeong, Chang-Hoo;Choi, Sung-Pil
    • The KIPS Transactions:PartD
    • /
    • v.18D no.5
    • /
    • pp.329-338
    • /
    • 2011
  • Terminology recognition system which is a preceding research for text mining, information extraction, information retrieval, semantic web, and question-answering has been intensively studied in limited range of domains, especially in bio-medical domain. We propose a domain independent terminology recognition system based on machine learning method using dictionary, syntactic features, and Web search results, since the previous works revealed limitation on applying their approaches to general domain because their resources were domain specific. We achieved F-score 80.8 and 6.5% improvement after comparing the proposed approach with the related approach, C-value, which has been widely used and is based on local domain frequencies. In the second experiment with various combinations of unithood features, the method combined with NGD(Normalized Google Distance) showed the best performance of 81.8 on F-score. We applied three machine learning methods such as Logistic regression, C4.5, and SVMs, and got the best score from the decision tree method, C4.5.