• Title/Summary/Keyword: Text Pattern

Search Result 302, Processing Time 0.027 seconds

Emerging Topic Detection Using Text Embedding and Anomaly Pattern Detection in Text Streaming Data (텍스트 스트리밍 데이터에서 텍스트 임베딩과 이상 패턴 탐지를 이용한 신규 주제 발생 탐지)

  • Choi, Semok;Park, Cheong Hee
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.9
    • /
    • pp.1181-1190
    • /
    • 2020
  • Detection of an anomaly pattern deviating normal data distribution in streaming data is an important technique in many application areas. In this paper, a method for detection of an newly emerging pattern in text streaming data which is an ordered sequence of texts is proposed based on text embedding and anomaly pattern detection. Using text embedding methods such as BOW(Bag Of Words), Word2Vec, and BERT, the detection performance of the proposed method is compared. Experimental results show that anomaly pattern detection using BERT embedding gave an average F1 value of 0.85 and the F1 value of 1 in three cases among five test cases.

A Novel Text Sample Selection Model for Scene Text Detection via Bootstrap Learning

  • Kong, Jun;Sun, Jinhua;Jiang, Min;Hou, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.771-789
    • /
    • 2019
  • Text detection has been a popular research topic in the field of computer vision. It is difficult for prevalent text detection algorithms to avoid the dependence on datasets. To overcome this problem, we proposed a novel unsupervised text detection algorithm inspired by bootstrap learning. Firstly, the text candidate in a novel form of superpixel is proposed to improve the text recall rate by image segmentation. Secondly, we propose a unique text sample selection model (TSSM) to extract text samples from the current image and eliminate database dependency. Specifically, to improve the precision of samples, we combine maximally stable extremal regions (MSERs) and the saliency map to generate sample reference maps with a double threshold scheme. Finally, a multiple kernel boosting method is developed to generate a strong text classifier by combining multiple single kernel SVMs based on the samples selected from TSSM. Experimental results on standard datasets demonstrate that our text detection method is robust to complex backgrounds and multilingual text and shows stable performance on different standard datasets.

String extraction from text-background mixed documents using mathematical morphology (텍스트-배경무늬 혼합문서로부터 수리형태학을 이용한 문자열 추출)

  • 성연진;어진우
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.10
    • /
    • pp.104-111
    • /
    • 1997
  • It is known as a difficult problem to recognize text-background mixed documents. In this paper a new string extraction algorithm, using mathematical morphology for the document consisting of text and overlapped periodic background pattern, is proposed. The algorithm consists of pattern periodicity feature extraction and background removal. The extracted pattern periodicity feature is used to determine the shape of structuring elements for morphological pre- and post-processing to remove background. The effectiveness of the proposed algorithm over the existing one is also verified through the experiments with various test documents.

  • PDF

Systematic Approach for Detecting Text in Images Using Supervised Learning

  • Nguyen, Minh Hieu;Lee, GueeSang
    • International Journal of Contents
    • /
    • v.9 no.2
    • /
    • pp.8-13
    • /
    • 2013
  • Locating text data in images automatically has been a challenging task. In this approach, we build a three stage system for text detection purpose. This system utilizes tensor voting and Completed Local Binary Pattern (CLBP) to classify text and non-text regions. While tensor voting generates the text line information, which is very useful for localizing candidate text regions, the Nearest Neighbor classifier trained on discriminative features obtained by the CLBP-based operator is used to refine the results. The whole algorithm is implemented in MATLAB and applied to all images of ICDAR 2011 Robust Reading Competition data set. Experiments show the promising performance of this method.

Text Region Extraction Using Pattern Histogram of Character-Edge Map in Natural Images (문자-에지 맵의 패턴 히스토그램을 이용한 자연이미지에세 텍스트 영역 추출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Lee, Woo-Ram;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1167-1174
    • /
    • 2006
  • Text region detection from a natural scene is useful in many applications such as vehicle license plate recognition. Therefore, in this paper, we propose a text region extraction method using pattern histogram of character-edge maps. We create 16 kinds of edge maps from the extracted edges and then, we create the 8 kinds of edge maps which compound 16 kinds of edge maps, and have a character feature. We extract a candidate of text regions using the 8 kinds of character-edge maps. The verification about candidate of text region used pattern histogram of character-edge maps and structural features of text region. Experimental results show that the proposed method extracts a text regions composed of complex background, various font sizes and font colors effectively.

  • PDF

Text Region Extraction using Pattern Histogram of Character-Edge Map in Natural Images (문자-에지 맵의 패턴 히스토그램을 이용한 자연이미지에서의 텍스트 영역 추출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Lee, Woo-Ram;Kwon, Kyo-Hyun;Jun, Byoung-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.11a
    • /
    • pp.220-224
    • /
    • 2006
  • The text to be included in the natural images has many important information in the natural image. Therefore, if we can extract the text in natural images, It can be applied to many important applications. In this paper, we propose a text region extraction method using pattern histogram of character-edge map. We extract the edges with the Canny edge detector and creates 16 kind of edge map from an extracted edges. And then we make a character-edge map of 8 kinds that have a character feature with a combination of an edge map. We extract text region using 8 kinds of character-edge map and 16 kind of edge map. Verification of text candidate region uses analysis of a character-edge map pattern histogram and structural feature of text region. The method to propose experimented with various kind of the natural images. The proposed approach extracted text region from a natural images to have been composed of a complex background, various letters, various text colors effectively.

  • PDF

Automatic In-Text Keyword Tagging based on Information Retrieval

  • Kim, Jin-Suk;Jin, Du-Seok;Kim, Kwang-Young;Choe, Ho-Seop
    • Journal of Information Processing Systems
    • /
    • v.5 no.3
    • /
    • pp.159-166
    • /
    • 2009
  • As shown in Wikipedia, tagging or cross-linking through major keywords in a document collection improves not only the readability of documents but also responsive and adaptive navigation among related documents. In recent years, the Semantic Web has increased the importance of social tagging as a key feature of the Web 2.0 and, as its crucial phenotype, Tag Cloud has emerged to the public. In this paper we provide an efficient method of automated in-text keyword tagging based on large-scale controlled term collection or keyword dictionary, where the computational complexity of O(mN) - if a pattern matching algorithm is used - can be reduced to O(mlogN) - if an Information Retrieval technique is adopted - while m is the length of target document and N is the total number of candidate terms to be tagged. The result shows that automatic in-text tagging with keywords filtered by Information Retrieval speeds up to about 6 $\sim$ 40 times compared with the fastest pattern matching algorithm.

Modified Version of SVM for Text Categorization

  • Jo, Tae-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.52-60
    • /
    • 2008
  • This research proposes a new strategy where documents are encoded into string vectors for text categorization and modified versions of SVM to be adaptable to string vectors. Traditionally, when the traditional version of SVM is used for pattern classification, raw data should be encoded into numerical vectors. This encoding may be difficult, depending on a given application area of pattern classification. For example, in text categorization, encoding full texts given as raw data into numerical vectors leads to two main problems: huge dimensionality and sparse distribution. In this research, we encode full texts into string vectors, and apply the modified version of SVM adaptable to string vectors for text categorization.

Inverted Index based Modified Version of K-Means Algorithm for Text Clustering

  • Jo, Tae-Ho
    • Journal of Information Processing Systems
    • /
    • v.4 no.2
    • /
    • pp.67-76
    • /
    • 2008
  • This research proposes a new strategy where documents are encoded into string vectors and modified version of k means algorithm to be adaptable to string vectors for text clustering. Traditionally, when k means algorithm is used for pattern classification, raw data should be encoded into numerical vectors. This encoding may be difficult, depending on a given application area of pattern classification. For example, in text clustering, encoding full texts given as raw data into numerical vectors leads to two main problems: huge dimensionality and sparse distribution. In this research, we encode full texts into string vectors, and modify the k means algorithm adaptable to string vectors for text clustering.

A Study on 『Bihuayijing·Vol 1』 -Focusing on Diagnosis and Pattern Differentiation- (『필화의경(筆花醫鏡)·권일(卷一)』에 대한 연구(硏究) - 진단 및 변증을 중심으로 -)

  • Kim, Yeon-Tae;Kim, Yong-Jin
    • Journal of Korean Medical classics
    • /
    • v.33 no.1
    • /
    • pp.17-28
    • /
    • 2020
  • Objectives : Classical texts such as 『Donguibogam』 and 『Yixuerumen』 have previously been used as primers to students of Korean Medicine. However, their massiveness in volume and comprehensiveness in contents make it unfit for students whose school curriculum lacked classical chinese. This paper suggests another introductory text that would be more practical in the current situation. Methods :Based on the translation of the main text and annotations, the clinical meanings of the contents were studied. Afterwards its practical application as a primer was considered. Results : The text focuses on the medically important issues in simple and accessible form, making it an important text for beginners to establish the foundation in medicine. Conclusions : Beginners will be able to establish a standard for basic medical knowledge through this text and also apply its contents to diseases that are relatively easy to treat.