• 제목/요약/키워드: Text Data Analysis

검색결과 1,555건 처리시간 0.026초

빅데이터 환경에서 텍스트마이닝 기법을 활용한 공공문서 분류체계의 적용사례 연구 (Case Study on Public Document Classification System That Utilizes Text-Mining Technique in BigData Environment)

  • 심장섭;이강욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.1085-1089
    • /
    • 2015
  • 과거의 텍스트마이닝기법은 텍스트 자체의 복잡성과 텍스트 내에 산재한 변수의 자유도 때문에 분석 알고리즘을 구현하는데 어려움이 있었다. 의미 있는 정보를 얻기 위하여 어렵게 알고리즘을 구현했다고 하더라도, 기계적으로 텍스트 분석에 소요되는 시간이 텍스트를 사람이 직접 읽어 분석 하는 것보다 많은 시간이 요구 되었다. 그러나 최근 하드웨어와 분석 알고리즘의 발전과 함께 빅데이터라는 기술이 등장하였으며, 앞에서 설명한 제약사항을 극복할 수 있게 되었고, 텍스트마이닝을 통한 분석이 현실세계에서 그 가치를 충분히 인정받고 있다. 만약, 텍스트의 탐색 수준에서 벗어나 마이닝을 통하여 분석이 가능하다면 텍스트 분석에 소비되는 인적, 물적 자원의 비용을 절감할 수 있기 때문에 공공분야에서 절실히 요구되는 창조적인 일에 더 많은 자원을 효과적으로 활용할 수 있을 것이다. 이에 본 논문에서는 인적 자원이 수작업으로 하는 공공분야 문서 분류의 결과값과 빅데이터 환경에서 텍스트마이닝기반의 문서내 단어 빈도수(TF-IDF)와 문서간 코사인 유사도(Cosine Similarity)를 활용한 공공분야 문서분류의 결과값을 비교하여 평가한다.

  • PDF

Data Dictionary 기반의 R Programming을 통한 비정형 Text Mining Algorithm 연구 (A study on unstructured text mining algorithm through R programming based on data dictionary)

  • 이종화;이현규
    • 한국산업정보학회논문지
    • /
    • 제20권2호
    • /
    • pp.113-124
    • /
    • 2015
  • 미리 선언된 구조를 이용하여 수집 저장된 정형적 데이터와는 달리 웹 2.0의 시대에서 일반 사용자들이 평상시에 사용하는 자연어 형태로 작성된 비정형 데이터 분석은 과거보다 훨씬 더 넓은 응용범위를 가지고 있다. 데이터 양이 폭발적으로 증가하고 있다는 특성뿐 만 아니라 인간의 감성이 그대로 표현된 특성을 가진 텍스트에서 의미 있는 정보를 추출하는 빅데이터 분석 기법을 텍스트마이닝(Text Mining)이라 하며 본 연구는 이를 주제로 하고 있다. 본 연구를 위해 오픈 소스인 통계분석용 소프트웨어 R 프로그램을 이용하였으며, 비정형 텍스트 문서를 웹 환경에서 수집, 저장, 전처리, 분석 작업과 시각화(Frequency Analysis, Cluster Analysis, Word Cloud, Social Network Analysis)작업 등의 과정에 관한 알고리즘 구현을 연구하였다. 특히, 연구자의 연구 영역 분석에 초점을 더욱 높이기 위해 Data Dictionary를 참조한 키워드 추출 기법을 사용하였다. 실제 사례에 적용한 R은 다양한 OS 구동, 일반적 언어와의 인터페이스 지원 등 통계 분석용 소프트웨어로써 매우 유용하다는 점을 발견할 수 있었다.

시맨틱 텍스트 마이닝을 위한 온톨로지 활용 방안 (Using Ontologies for Semantic Text Mining)

  • 유은지;김정철;이춘열;김남규
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제21권3호
    • /
    • pp.137-161
    • /
    • 2012
  • The increasing interest in big data analysis using various data mining techniques indicates that many commercial data mining tools now need to be equipped with fundamental text analysis modules. The most essential prerequisite for accurate analysis of text documents is an understanding of the exact semantics of each term in a document. The main difficulties in understanding the exact semantics of terms are mainly attributable to homonym and synonym problems, which is a traditional problem in the natural language processing field. Some major text mining tools provide a thesaurus to solve these problems, but a thesaurus cannot be used to resolve complex synonym problems. Furthermore, the use of a thesaurus is irrelevant to the issue of homonym problems and hence cannot solve them. In this paper, we propose a semantic text mining methodology that uses ontologies to improve the quality of text mining results by resolving the semantic ambiguity caused by homonym and synonym problems. We evaluate the practical applicability of the proposed methodology by performing a classification analysis to predict customer churn using real transactional data and Q&A articles from the "S" online shopping mall in Korea. The experiments revealed that the prediction model produced by our proposed semantic text mining method outperformed the model produced by traditional text mining in terms of prediction accuracy such as the response, captured response, and lift.

텍스트마이닝을 이용한 약물유해반응 보고자료 분석 (Analysis of Adverse Drug Reaction Reports using Text Mining)

  • 김현희;유기연
    • 한국임상약학회지
    • /
    • 제27권4호
    • /
    • pp.221-227
    • /
    • 2017
  • Background: As personalized healthcare industry has attracted much attention, big data analysis of healthcare data is essential. Lots of healthcare data such as product labeling, biomedical literature and social media data are unstructured, extracting meaningful information from the unstructured text data are becoming important. In particular, text mining for adverse drug reactions (ADRs) reports is able to provide signal information to predict and detect adverse drug reactions. There has been no study on text analysis of expert opinion on Korea Adverse Event Reporting System (KAERS) databases in Korea. Methods: Expert opinion text of KAERS database provided by Korea Institute of Drug Safety & Risk Management (KIDS-KD) are analyzed. To understand the whole text, word frequency analysis are performed, and to look for important keywords from the text TF-IDF weight analysis are performed. Also, related keywords with the important keywords are presented by calculating correlation coefficient. Results: Among total 90,522 reports, 120 insulin ADR report and 858 tramadol ADR report were analyzed. The ADRs such as dizziness, headache, vomiting, dyspepsia, and shock were ranked in order in the insulin data, while the ADR symptoms such as vomiting, 어지러움, dizziness, dyspepsia and constipation were ranked in order in the tramadol data as the most frequently used keywords. Conclusion: Using text mining of the expert opinion in KIDS-KD, frequently mentioned ADRs and medications are easily recovered. Text mining in ADRs research is able to play an important role in detecting signal information and prediction of ADRs.

텍스트 감정분석을 이용한 IT 서비스 품질요소 분석 (Analysis of IT Service Quality Elements Using Text Sentiment Analysis)

  • 김홍삼;김종수
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.33-40
    • /
    • 2020
  • In order to satisfy customers, it is important to identify the quality elements that affect customers' satisfaction. The Kano model has been widely used in identifying multi-dimensional quality attributes in this purpose. However, the model suffers from various shortcomings and limitations, especially those related to survey practices such as the data amount, reply attitude and cost. In this research, a model based on the text sentiment analysis is proposed, which aims to substitute the survey-based data gathering process of Kano models with sentiment analysis. In this model, from the set of opinion text, quality elements for the research are extracted using the morpheme analysis. The opinions' polarity attributes are evaluated using text sentiment analysis, and those polarity text items are transformed into equivalent Kano survey questions. Replies for the transformed survey questions are generated based on the total score of the original data. Then, the question-reply set is analyzed using both the original Kano evaluation method and the satisfaction index method. The proposed research model has been tested using a large amount of data of public IT service project evaluations. The result shows that it can replace the existing practice and it promises advantages in terms of quality and cost of data gathering. The authors hope that the proposed model of this research may serve as a new quality analysis model for a wide range of areas.

텍스트마이닝을 활용한 북한 지도자의 신년사 및 연설문 트렌드 연구 (Discovering Meaningful Trends in the Inaugural Addresses of North Korean Leader Via Text Mining)

  • 박철수
    • Journal of Information Technology Applications and Management
    • /
    • 제26권3호
    • /
    • pp.43-59
    • /
    • 2019
  • The goal of this paper is to investigate changes in North Korea's domestic and foreign policies through automated text analysis over North Korean new year addresses, one of most important and authoritative document publicly announced by North Korean government. Based on that data, we then analyze the status of text mining research, using a text mining technique to find the topics, methods, and trends of text mining research. We also investigate the characteristics and method of analysis of the text mining techniques, confirmed by analysis of the data. We propose a procedure to find meaningful tendencies based on a combination of text mining, cluster analysis, and co-occurrence networks. To demonstrate applicability and effectiveness of the proposed procedure, we analyzed the inaugural addresses of Kim Jung Un of the North Korea from 2017 to 2019. The main results of this study show that trends in the North Korean national policy agenda can be discovered based on clustering and visualization algorithms. We found that uncovered semantic structures of North Korean new year addresses closely follow major changes in North Korean government's positions toward their own people as well as outside audience such as USA and South Korea.

사회과학을 위한 양적 텍스트 마이닝: 이주, 이민 키워드 논문 및 언론기사 분석 (Quantitative Text Mining for Social Science: Analysis of Immigrant in the Articles)

  • 이수정;최두영
    • 한국콘텐츠학회논문지
    • /
    • 제20권5호
    • /
    • pp.118-127
    • /
    • 2020
  • 본 연구는 최근 사회과학에서 실시되고 있는 양적 텍스트 분석의 흐름과 분석을 실시함에 있어 주의해야 할 사례를 포함하여 기술 하였다. 특히, 2017년부터 2019년까지 3년간 학술지와 언론에서 사용된 "이주", "이민" 키워드를 기반으로 사례연구를 실시하였다. 이를 위해 최근 사회과학분야에서 주목 받는 자연어 처리 기술(NLP)를 이용한 양적 텍스트 분석 (Quantitate text analysis)을 사용하였다. 양적 텍스트 분석은 문서를 구조적 데이터로 변환하여, 가설의 발견 및 검증을 실시하는 데이터 과학의 영역으로, 데이터의 모델링 및 가시화 등이 가능하고, 특히 비구조화 된 데이터를 구조화할 수 있다는 점에서 사회과학 분야에 많이 도입하였다. 따라서 본 연구는 양적 텍스트 분석을 통해 "이주", "이민"을 키워드로 한 연구 및 언론 기사에 대한 통계 분석을 실시하고 도출된 결론에 대한 해석을 실시하였다.

Text Mining in Online Social Networks: A Systematic Review

  • Alhazmi, Huda N
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.396-404
    • /
    • 2022
  • Online social networks contain a large amount of data that can be converted into valuable and insightful information. Text mining approaches allow exploring large-scale data efficiently. Therefore, this study reviews the recent literature on text mining in online social networks in a way that produces valid and valuable knowledge for further research. The review identifies text mining techniques used in social networking, the data used, tools, and the challenges. Research questions were formulated, then search strategy and selection criteria were defined, followed by the analysis of each paper to extract the data relevant to the research questions. The result shows that the most social media platforms used as a source of the data are Twitter and Facebook. The most common text mining technique were sentiment analysis and topic modeling. Classification and clustering were the most common approaches applied by the studies. The challenges include the need for processing with huge volumes of data, the noise, and the dynamic of the data. The study explores the recent development in text mining approaches in social networking by providing state and general view of work done in this research area.

거주민 공간복지 향상을 위한 공공 개방 민원 데이터 분석 모델 - 강동구 공간복지 분석 사례를 중심으로 - (A Public Open Civil Complaint Data Analysis Model to Improve Spatial Welfare for Residents - A Case Study of Community Welfare Analysis in Gangdong District -)

  • 신동윤
    • 한국BIM학회 논문집
    • /
    • 제13권3호
    • /
    • pp.39-47
    • /
    • 2023
  • This study aims to introduce a model for enhancing community well-being through the utilization of public open data. To objectively assess abstract notions of residential satisfaction, text data from complaints is analyzed. By leveraging accessible public data, costs related to data collection are minimized. Initially, relevant text data containing civic complaints is collected and refined by removing extraneous information. This processed data is then combined with meaningful datasets and subjected to topic modeling, a text mining technique. The insights derived are visualized using Geographic Information System (GIS) and Application Programming Interface (API) data. The efficacy of this analytical model was demonstrated in the Godeok/Gangil area. The proposed methodology allows for comprehensive analysis across time, space, and categories. This flexible approach involves incorporating specific public open data as needed, all within the overarching framework.

텍스트 데이터 시각화를 위한 MVC 프레임워크 (A MVC Framework for Visualizing Text Data)

  • 최광선;정교성;김수동
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.39-58
    • /
    • 2014
  • 빅데이터의 중요성에 대한 인식이 확산되고, 관련한 기술이 발전됨에 따라, 최근에는 빅데이터의 처리와 분석의 결과를 어떻게 시각화할 것인지가 매우 관심 받는 주제로 부각되고 있다. 이는 분석된 결과를 보다 명확하고 효과적으로 전달하는 데에 있어서 데이터의 시각화가 매우 효과적인 방법이기 때문이다. 시각화는 분석 시스템과 사용자가 소통하기 위한 하나의 그래픽 사용자 인터페이스(GUI)를 담당하는 역할을 한다. 통상적으로 이러한 GUI 부분은 데이터의 처리나 분석의 결과와 독립될 수록 시스템의 개발과 유지보수가 용이하며, MVC(Model-View-Controller)와 같은 디자인 패턴의 적용을 통해 GUI와 데이터 처리 및 관리 부분 간의 결합도를 최소화하는 것이 중요하다. 한편 빅데이터는 크게 정형 데이터와 비정형 데이터로 구분할 수 있는데 정형 데이터는 시각화가 상대적으로 용이한 반면, 비정형 데이터는 시각화를 구현하기가 복잡하고 다양하다. 그럼에도 불구하고 비정형 데이터에 대한 분석과 활용이 점점 더 확산됨에 따라, 기존의 전통적인 정형 데이터를 위한 시각화 도구들의 한계를 벗어나기 위해 각각의 시스템들의 목적에 따라 고유의 방식으로 시각화 시스템이 구축되는 현실에 직면해 있다. 더욱이나 현재 비정형 데이터 분석의 대상 중 대부분을 차지하고 있는 텍스트 데이터의 경우 언어 분석, 텍스트 마이닝, 소셜 네트워크 분석 등 적용 기술이 매우 다양하여 하나의 시스템에 적용된 시각화 기술을 다른 시스템에 적용하는 것이 용이하지 않다. 이는 현재의 텍스트 분석 결과에 대한 정보 모델이 서로 다른 시스템에 적용될 수 있도록 설계되지 못하는 경우가 많기 때문이다. 본 연구에서는 이러한 문제를 해결하기 위하여 다양한 텍스트 데이터 분석 사례와 시각화 사례들의 공통적 구성 요소들을 식별하여 표준화된 정보 모델인 텍스트 데이터 시각화 모델을 제시하고, 이를 통해 시각화의 GUI 부분과 연결할 수 있는 시스템 모델로서의 시각화 프레임워크인 TexVizu를 제안하고자 한다.