• 제목/요약/키워드: Text Cuboid

검색결과 2건 처리시간 0.041초

위키피디어 기반 개념 공간을 가지는 시멘틱 텍스트 모델 (A Semantic Text Model with Wikipedia-based Concept Space)

  • 김한준;장재영
    • 한국전자거래학회지
    • /
    • 제19권3호
    • /
    • pp.107-123
    • /
    • 2014
  • 텍스트마이닝 연구의 기본적인 난제는 기존 텍스트 표현모델이 자연어 문장으로 기술된 텍스트 데이터로부터 의미 또는 개념 정보를 표현하지 않는데 기인한다. 기존 텍스트 표현모델인 벡터공간 모델(vector space model), 불리언 모델(Boolean model), 통계 모델(statistical model), 텐서공간 모델(tensor space model) 등은 'Bag-of-Words' 방식에 바탕을 두고 있다. 이러한 텍스트 모델들은 텍스트에 포함된 단어와 그것의 출현 횟수만으로 텍스트를 표현하므로, 단어의 함축 의미, 단어의 순서 및 텍스트의 구조를 전혀 표현하지 못한다. 대부분의 텍스트 마이닝 기술은 대상 문서를 'Bag-of-Words' 방식의 텍스트 모델로 표현함을 전제로 하여 발전하여 왔다. 하지만 오늘날 빅데이터 시대를 맞이하여 방대한 규모의 텍스트 데이터를 보다 정밀하게 분석할 수 있는 새로운 패러다임의 표현모델을 요구하고 있다. 본 논문에서 제안하는 텍스트 표현모델은 개념공간을 문서 및 단어와 동등한 매핑 공간으로 상정하여, 그 세 가지 공간에 대한 연관 관계를 모두 표현한다. 개념공간의 구성을 위해서 위키피디어 데이터를 활용하며, 하나의 개념은 하나의 위키피디어 페이지로부터 정의된다. 결과적으로 주어진 텍스트 문서집합을 의미적으로 해석이 가능한 3차 텐서(3-order tensor)로 표현하게 되며, 따라서 제안 모델을 텍스트 큐보이드 모델이라 명명한다. 20Newsgroup 문서집합을 사용하여 문서 및 개념 수준의 클러스터링 정확도를 평가함으로써, 제안 모델이 'Bag-of-Word' 방식의 대표적 모델인 벡터공간 모델에 비해 우수함을 보인다.

위키피디아 기반의 3차원 텍스트 표현모델을 이용한 개념망 구축 기법 (Building Concept Networks using a Wikipedia-based 3-dimensional Text Representation Model)

  • 홍기주;김한준;이승연
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권9호
    • /
    • pp.596-603
    • /
    • 2015
  • 개념망(Concept Network)은 시멘틱 검색, 개인화 검색, 추천, 텍스트마이닝 기법의 개선 등에 필수적인 지식베이스이다. 최근 효과적인 개념망 구축을 위해 온톨로지를 기반으로 하여 개념의 표현을 확장시키는 연구가 활발하다. 이에 본 논문은 World Knowledge로 평가받고 있는 위키피디아 데이터를 '개념' 집합의 원천으로 활용하여 3차원 텍스트 표현 모델 기반 개념망을 구축하는 기법을 제안한다. 사실상 개념들 간의 관계 정보는 시간의 흐름에 따라 변동하기 때문에, 텍스트 문서로부터 도출되는 '개념'은 Formal Concept Analysis 이론체계의 개념에 따르는 것이 바람직하다. 이를 위해 본 논문은 하나의 개념을 '단어'와 '문서' 간의 2차원 행렬로 표현하여 문서집합에 잠재된 개념간의 연관망을 보다 정확하게 생성하게 한다.