• Title/Summary/Keyword: Text Chunking

Search Result 12, Processing Time 0.016 seconds

Korean and English Text Chunking Using IG Back-off Smoothing and Probabilistic Model (IG back-off 평탄화와 확률 기반 모델을 이용한 한국어 및 영어 단위화)

  • Yi, Eun-Ji;Lee, Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.118-123
    • /
    • 2002
  • 많은 자연언어처리 분야에서 문장의 단위화는 기본적인 처리 단계로서 중요한 위치를 차지하고 있다. 한국어 단위화에 대한 기존 연구들은 규칙 기반 방법이나 기계 학습 기법을 이용한 것이 대부분이었다. 본 논문에서는 통계 기반 방식의 일환으로 순수 확률기반 모델을 이용한 단위화 방법을 제시한다. 확률 기반 모델은 처리하고자 하는 해당 언어에 대한 깊은 지식 없이도 적용 가능하다는 장점을 가지므로 다양한 언어의 단위화에 대한 기본 모델로서 이용될 수 있다. 또한 자료 부족 문제를 해결하기 위해 메모리 기반 학습 시에 사용하는 IG back-off 평탄화 방식을 시스템에 적용하였다. 본 논문의 모텔을 적용한 단위화 시스템을 이용하여 한국어와 영어에 대해 실험한 결과 비교적 작은 규모의 말뭉치를 학습하였음에도 불구하고 각각 90.0%, 90.0%의 정확도를 보였다.

  • PDF

Part-of-speech Tagging for Hindi Corpus in Poor Resource Scenario

  • Modi, Deepa;Nain, Neeta;Nehra, Maninder
    • Journal of Multimedia Information System
    • /
    • v.5 no.3
    • /
    • pp.147-154
    • /
    • 2018
  • Natural language processing (NLP) is an emerging research area in which we study how machines can be used to perceive and alter the text written in natural languages. We can perform different tasks on natural languages by analyzing them through various annotational tasks like parsing, chunking, part-of-speech tagging and lexical analysis etc. These annotational tasks depend on morphological structure of a particular natural language. The focus of this work is part-of-speech tagging (POS tagging) on Hindi language. Part-of-speech tagging also known as grammatical tagging is a process of assigning different grammatical categories to each word of a given text. These grammatical categories can be noun, verb, time, date, number etc. Hindi is the most widely used and official language of India. It is also among the top five most spoken languages of the world. For English and other languages, a diverse range of POS taggers are available, but these POS taggers can not be applied on the Hindi language as Hindi is one of the most morphologically rich language. Furthermore there is a significant difference between the morphological structures of these languages. Thus in this work, a POS tagger system is presented for the Hindi language. For Hindi POS tagging a hybrid approach is presented in this paper which combines "Probability-based and Rule-based" approaches. For known word tagging a Unigram model of probability class is used, whereas for tagging unknown words various lexical and contextual features are used. Various finite state machine automata are constructed for demonstrating different rules and then regular expressions are used to implement these rules. A tagset is also prepared for this task, which contains 29 standard part-of-speech tags. The tagset also includes two unique tags, i.e., date tag and time tag. These date and time tags support all possible formats. Regular expressions are used to implement all pattern based tags like time, date, number and special symbols. The aim of the presented approach is to increase the correctness of an automatic Hindi POS tagging while bounding the requirement of a large human-made corpus. This hybrid approach uses a probability-based model to increase automatic tagging and a rule-based model to bound the requirement of an already trained corpus. This approach is based on very small labeled training set (around 9,000 words) and yields 96.54% of best precision and 95.08% of average precision. The approach also yields best accuracy of 91.39% and an average accuracy of 88.15%.