• Title/Summary/Keyword: Tetramethylammonium Hydroxide (TMAH)

Search Result 23, Processing Time 0.016 seconds

Measurements of ${CO_3}^{2-}$ ion concentration using porous silicon diaphragm coated with LDPE film (LDPE 필름으로 코팅된 다공질 실리콘 다이어프램을 이용한 탄산칼륨 용역내의 ${CO_3}^{2-}$ 이온농도 측정)

  • Yang, Jung-Hoon;Kang, Chul-Goo;Jin, Joon-Hyung;Min, Nam-Ki;Hong, Suk-In
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1908-1910
    • /
    • 2001
  • 본 논문은 마이크로머시닝 기술을 이용하여 lift-off 공정으로 패턴닝 한 후 TMAH (Tetramethylammonium Hydroxide) 용액으로 $5{\sim}100{\mu}m$ 두께의 실리콘 다이어프램을 제작하였다. Pt/Ti 박막을 HF 전해질의 mask 물질로 사용하여 HF 용액 내에서 전기화학적 방법으로 정전압을 인가, 다이어프램 영역에 다공질 실리콘을 성장시켜 관통하였다. 140$^{\circ}C$의 질소 분위기에서 $10{\sim}15{\mu}m$두께의 LDPE(Low Density Poly Ethylene) 필름을 물리적으로 다이어프램 영역에 코팅하고 $K_2CO_3$ 용액내에서 ${CO_3}^{2-}$ 이온의 barrier에 의한 전류의 감소를 전기화학적인 분석방법에 의하여 측정하였다. 일정 전압하에서 이온 농도에 기인하는 다공질 실리콘과 LDPE 표면에서 Barrier의 두께에 따른 저항의 증가를 전극으로 감지하여 농도-전류의 특성을 측정하고 이것을 기준으로 하여 미지농도의 $K_2CO_3$ 용액내의 ${CO_3}^{2-}$ 이온 농도를 측정하였다.

  • PDF

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (I): e-ASM Development and Digital Simulation Implementation (첨단 전자산업 폐수처리시설의 Water Digital Twin(I): e-ASM 모델 개발과 Digital Simulation 구현)

  • Shim, Yerim;Lee, Nahui;Jeong, Chanhyeok;Heo, SungKu;Kim, SangYoon;Nam, KiJeon;Yoo, ChangKyoo
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.63-78
    • /
    • 2022
  • Electronics industrial wastewater treatment facilities release organic wastewaters containing high concentrations of organic pollutants and more than 20 toxic non-biodegradable pollutants. One of the major challenges of the fourth industrial revolution era for the electronics industry is how to treat electronics industrial wastewater efficiently. Therefore, it is necessary to develop an electronics industrial wastewater modeling technique that can evaluate the removal efficiency of organic pollutants, such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorous (TP), and tetramethylammonium hydroxide (TMAH), by digital twinning an electronics industrial organic wastewater treatment facility in a cyber physical system (CPS). In this study, an electronics industrial wastewater activated sludge model (e-ASM) was developed based on the theoretical reaction rates for the removal mechanisms of electronics industrial wastewater considering the growth and decay of micro-organisms. The developed e-ASM can model complex biological removal mechanisms, such as the inhibition of nitrification micro-organisms by non-biodegradable organic pollutants including TMAH, as well as the oxidation, nitrification, and denitrification processes. The proposed e-ASM can be implemented as a Water Digital Twin for real electronics industrial wastewater treatment systems and be utilized for process modeling, effluent quality prediction, process selection, and design efficiency across varying influent characteristics on a CPS.

Characteristics of Flue Gas Using Direct Combustion of VOC and Ammonia (휘발성 유기 화합물 및 암모니아 직접 연소를 통한 배기가스 특성)

  • Kim, JongSu;Choi, SeukCheun;Jeong, SooHwa;Mock, ChinSung;Kim, DooBoem
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2022
  • The semiconductor process currently emits various by-products and unused gases. Emissions containing pollutants are generally classified into categories such as organic, acid, alkali, thermal, and cabinet exhaust. They are discharged after treatment in an atmospheric prevention facility suitable for each exhaust type. The main components of organic exhaust are volatile organic compounds (VOC), which is a generic term for oxygen-containing hydrocarbons, sulfur-containing hydrocarbons, and volatile hydrocarbons, while the main components of alkali exhaust include ammonia and tetramethylammonium hydroxide. The purpose of this study was to determine the combustion characteristics and analyze the NOX reduction rate by maintaining a direct combustion and temperature to process organic and alkaline exhaust gases simultaneously. Acetone, isopropyl alcohol (IPA), and propylene glycol methyl ether acetate (PGMEA) were used as VOCs and ammonia was used as an alkali exhaust material. Independent and VOC-ammonia mixture combustion tests were conducted for each material. The combustion tests for the VOCs confirmed that complete combustion occurred at an equivalence ratio of 1.4. In the ammonia combustion test, the NOX concentration decreased at a lower equivalence ratio. In the co-combustion of VOC and ammonia, NO was dominant in the NOX emission while NO2 was detected at approximately 10 ppm. Overall, the concentration of nitrogen oxide decreased due to the activation of the oxidation reaction as the reaction temperature increased. On the other hand, the concentration of carbon dioxide increased. Flameless combustion with an electric heat source achieved successful combustion of VOC and ammonia. This technology is expected to have advantages in cost and compactness compared to existing organic and alkaline treatment systems applied separately.