• 제목/요약/키워드: Tetramethylammonium Hydroxide (TMAH)

검색결과 23건 처리시간 0.023초

압력센서용 다이아프램 제작을 위한 TMAH/AP 식각특성 (The Etching Characteristics of TMAH/AP for the Diaphragm Fabrication of Pressure Sensors)

  • 윤의중;김좌연
    • 반도체디스플레이기술학회지
    • /
    • 제2권4호
    • /
    • pp.19-22
    • /
    • 2003
  • In this paper, Si anisotropic etching characteristics of tetramethylammonium hydroxide (TMAH)/ammonium persulfate (AP) solutions were investigated to realize the optimum structure of a diaphragm for the piezoresistive pressure sensor application. Due to its low toxicity and its high compatibility with the CMOS processing, TMAH was used as Si anisotropic etchants. The variations of Si etch rate on the etching temperature, TMAH concentration, and etching time were obtained. With increasing the etching temperature and decreasing TMAH concentrations, the Si etch rate is increased while a significant non-uniformity exists on the etched surface because of formation of hillocks on the <100> surface. With the addition of AP to TMAH solution, the Si etch rate is increased and an improvement in flatness on the etching front is observed. The Si etch rate is also maximized with increasing the number of addition of AP to TMAH solution per one hour. The Si square diaphragms of 20$\mu\textrm{m}$ thickness and 100-400 $\mu\textrm{m}$ one-side length were fabricated successfully by adding AP of (5/6)g to 800 ml TMAH solution every 10 minutes.

  • PDF

압저항 압력센서 응용을 위한 TMAH/AP/IPA 용액의 실리콘 이방성 식각특성에 대한 연구 (A Study on Anisotropic Etching Characteristics of Silicon in TMAH/AP/IPA Solutions for Piezoresistive Pressure Sensor Applications)

  • 윤의중;김좌연;이태범;이석태
    • 대한전자공학회논문지SD
    • /
    • 제41권3호
    • /
    • pp.9-14
    • /
    • 2004
  • 본 논문에서는 압저항 압력센서 응용을 위한 최적의 멤브레인 구조를 만들기 위하여 tetramethylammonium hydroxide (TMAH)/ammonium persulfate (AP)/isopropyl alcoho 1(IPA) 용액의 Si 이방성 식각 특성을 연구하였다. 독성이 적고 CMOS 공정과의 높은 호환성 때문에 TMAH를 Si 이방성 식각용액으로 사용하였다. 식각온도, TMAH농도 및 식각시간에 따른 Si 식각률의 변화를 측정하였다. 식각온도를 증가 시키고 TMAH농도를 감소시킴에 따라 Si 식각률은 증가한 반면에 (100)면에 hillock 이 생겨 식각표면의 평탄도가 감소하였다. TMAH 에 IPA 용액을 첨가하면 식각표면의 평탄도를 증가 시키나 Si의 식각률을 감소 시켰다. 그러나, TMAH 에 AP 용액을 첨가하면 Si의 식각률과 식각표면의 평탄도 모두를 증가시켰다. 또한 시간당의 AP 첨가 횟수를 증가시킴으로서 Si 식각률을 최대화시킬 수 있었다. TMAH/AP 용액의 최적의 Si 식각조건을 적용하여 한변의 길이가 100∼400㎛이고 두께가 20㎛인 정사각형 모양의 Si 멤브레인을 성공적으로 제작하였다.

염기용액을 이용한 태양전지용 실리콘 기판의 절삭손상층 식각 특성 (The Saw Damage Etching Characteristics of Silicon Wafer for Solar Cell with Alkaline Solutions)

  • 권순우;이종협;윤세왕;김동환
    • 신재생에너지
    • /
    • 제5권1호
    • /
    • pp.26-31
    • /
    • 2009
  • The surface etching characteristics of single crystalline silicon wafer were investigated using potassium hydroxide (KOH) and tetramethylammonium hydroxide (TMAH). The saw damage layer was removed after 10min by KOH 45wt% solution at $80^{\circ}C$. The wafer etched at high temperature ($90^{\circ}C$) and in low concentration (4wt%) of TMAH solution showed an increased etch rate of silicon wafer and wavy patterns on the surface. Especially, pyramidal textures were formed in 4wt% TMAH solution without alcohol additives.

  • PDF

TMAH:IPA:Pyrazine 용액에서 실리콘의 선택식각 (Selective Etching of Silicon in TMAH:IPA:Pyrazine Solutions)

  • 정귀상;이채봉
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 전자세라믹스 센서 및 박막재료 반도체재료 일렉트렛트 및 응용기술
    • /
    • pp.112-116
    • /
    • 2000
  • This paper presents anisotropic ethcing characteristics of single-crystal silicon in tetramethylammonium hydroxide(TMAH):isopropyl alcohol(IPA) solutions containing pyrazine. With the addition of IPA to TMAH solutions, etching characteristics are exhibited that indicate an improvement in flatness on the etching front and a reduction in undercutting, but the etch rate on (100) silicon is decreased. The (100) silicon etch rate is improved by the addition of pyrazine. An etch rate on (100) silicon of $0.8\;{\mu}m/min$, which is faster by 13 % than a 20 wt.% solution of pure TMAH, is obtained using 20 wt.% TMAH:0.5 g/100 ml pyrazine solutions, but the etch rate on (100) silicon is decreased if more pyrazine is added. With the addition of pyrazine to a 25 wt.% TMAH solution, variations in flatness on the etching front were not observed and the undercutting ratio was reduced by 30 ~ 50 %.

  • PDF

Influence of the Structural Characteristics of Amino Acids on Direct Methylation Behaviors by TMAH in Pyrolysis

  • Choi, Sung-Seen;Ko, Ji-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권11호
    • /
    • pp.2542-2548
    • /
    • 2009
  • Direct methylation behaviors of 20 amino acids with tetramethylammonium hydroxide (TMAH) were studied under diluted conditions with silica. Amino acid concentration was controlled by dilution with silica ($SiO_2$) and the molar ratios of amino acid/silica were 0.20, 0.50, and 2.0. The molar ratios of amino acid/TMAH (0.51 - 4.64) also varied. It was found that arginine, asparagine, aspartic acid, cysteine, glutamic acid, and glutamine did not generate any directly methylated pyrolysis products, whereas alanine, glycine, isoleucine, leucine, methionine, phenylanaline, valine, and proline generated all the directly methylated pyrolysis products. Tri- and tetra methylated products of lysine consisted of two types. Histidine and threonine hardly generated the partly methylated products. Mono- and dimethylated products of serine, tryptophan, and tyrosine were not observed. Relative intensities of the methylated products varied with the amino acid concentration, TMAH concentration, and pyrolysis temperature. Direct methylation behaviors of amino acids were explained by the structural characteristics of amino acids.

TMAH에 기반한 열분해 질량분석법의 생물 탐지체계 적용 (Application of TMAH-based Pyrolysis Mass Spectrometry to a Biological Detection System)

  • 김주현
    • 한국군사과학기술학회지
    • /
    • 제14권2호
    • /
    • pp.289-298
    • /
    • 2011
  • TMAH-based Py-MS has been investigated to apply for a real-time classification of biological agents in the field. Acquiring reproducible data from mass spectrometry is a key to biological detection in the field. Nevertheless, it has been little studied on what factors could affect to the reproducibility of the TMAH-based Py-MS spectrum patterns. Given the TMAH-based Py-MS applied to the field system, several factors which could affect to the reproducible pattern of TMAH-based Py-MS spectra are needed to be examined, including changes in TMAH injection volume, growth temperature for microorganism, and number of cells collected in pyrolyzer, and implication of stabilizer used for lyophilization. This study showed that the reproducibility of the spectrum patterns was significantly hindered by changes in TMAH concentration and cell number, and stabilizer implication but not by growth temperature. Among those at low TMAH concentration(0.015m) was not observed the significant alterations of the spectrum pattern even when its injection volume was changed, yet was in different cell numbers and stabilizer implication.

TMAH/AP 용액의 실리콘 이방성 식각특성 및 다이아프램 제작에 대한 연구 (A Study on Anisotropic Etching Characteristics of Silicon in TMAH/AP Solutions and Fabrication of a Diaphragm)

  • 윤의중;김좌연;이태범;이석태
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.1033-1036
    • /
    • 2003
  • In this paper, Si anisotropic etching characteristics of tetramethylammonium hydroxide (TMAH)/ ammonium persulfate (AP) solutions were investigated to realize the optimum structure of a diaphragm for the piezoresistive pressure sensor application. Due to its low toxicity and its high compatibility with the CMOS processing, TMAH was used as Si anisotropic etchants. The variations of Si etch rate on the etching temperature, TMAH concentration, and etching time were obtained. With increasing the etching temperature and decreasing TMAH concentrations, the Si etch rate is increased while a significant non-uniformity exists on the etched surface because of formation of hillocks on the <100> surface. With the addition of AP to TMAH solution, the Si etch rate is increased and an improvement in flatness on the etching front is observed. The Si etch rate is also maximized with increasing the number of addition of AP to TMAH solution per one hour. The Si square diaphragms of 20${\mu}{\textrm}{m}$ thickness and 100~400${\mu}{\textrm}{m}$ one-side length were fabricated successfully by applying optimum Si etching conditions of TMAH/AP solutions.

  • PDF

The Effect of Pyrazine on TMAH:IPA Single-crystal Silicon Anisotropic Etching Properties

  • Gwiy-Sang Chung;Tae-Song Kim
    • Transactions on Electrical and Electronic Materials
    • /
    • 제2권2호
    • /
    • pp.21-25
    • /
    • 2001
  • This paper presents the effect of pyrazine on tetramethylammonium hydroxide (TMAH):isopropyl alcohol (IPA) single-crystal silicon anisotropic etching properties. With the addition of IPA to TMAH solutions, etching characteristics are exhibited an improvement in flatness on the etching front and a reduction in undercutting, but the etch rate on (100) silicon is decreased. The (100) silicon etch rate is improved by the addition of pyrazine. An etch rate on (100) silicon of 0.8 ${\mu}{\textrm}{m}$/min, which is faster by 13% than a 20 wt.% solution of pure TMAH, is obtained using 20 wt.% TMAH: 0.5 g/100 ml pyrazine solutions, but the etch rate on (100) silicon is decreased when more pyrazine is added. With the addition of pyrazine to a 25 wt.% TMAH solution, variations in flatness on the etching front are not observed and the undercutting ratio is reduced by 30~50%. These results indicate that anisotropic etching technology using TMAH:IPA:pyrazine solutions provides a powerful and versatile method for realizing of microelectromechanical systems.

  • PDF

실리콘 웨이퍼 습식 식각장치 설계 및 공정개발 (Design of Single-wafer Wet Etching Bath for Silicon Wafer Etching)

  • 김재환;이용일;홍상진
    • 반도체디스플레이기술학회지
    • /
    • 제19권2호
    • /
    • pp.77-81
    • /
    • 2020
  • Silicon wafer etching in micro electro mechanical systems (MEMS) fabrication is challenging to form 3-D structures. Well known Si-wet etch of silicon employs potassium hydroxide (KOH), tetramethylammonium hydroxide (TMAH) and sodium hydroxide (NaOH). However, the existing silicon wet etching process has a fatal disadvantage that etching of the back side of the wafer is hard to avoid. In this study, a wet etching bath for 150 mm wafers was designed to prevent back-side etching of silicon wafer, and we demonstrated the optimized process recipe to have anisotropic wet etching of silicon wafer without any damage on the backside. We also presented the design of wet bath for 300 mm wafer processing as a promising process development.