• 제목/요약/키워드: Tetrahydrofuran(THF)

검색결과 117건 처리시간 0.025초

MOCVD법에 의한 YBCO coated conductor용 YSZ 완충층 제작 (Fabrication of YSZ buffer layer for YBCO coated conductor by MOCVD method)

  • 선종원;김형섭;정충환;전병혁;김찬중
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 학술대회 논문집
    • /
    • pp.129-132
    • /
    • 2003
  • Yttria stabilized zirconia (YSZ) buffer layers were deposited by a metal organic chemical vapor deposition (MOCVD) technique using single liquid source for the application of YBa$_2$Cu$_3$$O_{7-x}$ (YBCO) coated conductor. Y:Zr mole ratio was 0.2:0.8, and tetrahydrofuran (THF) was used as a solvent. The (100) single crystal MgO substrate was used for searching deposition condition. Bi-axially oriented CeO$_2$ and NiO films were fabricated on {100}〈001〉 Ni substrate by the same method and used as templates. At a constant working pressure of 10 Torr, the deposition temperatures (660~80$0^{\circ}C$) and oxygen flow rates (100~500 sccm) were changed to find the optimum deposition condition. The best (100) oriented YSZ film on MgO was obtained at 74$0^{\circ}C$ and $O_2$ flow rate of 300 sccm. For YSZ buffer layer with this deposition condition on CeO$_2$/Ni template, full width half maximum (FWHM) values of the in-plane and out-of-plane alignments were 10.6$^{\circ}$ and 9.8$^{\circ}$, respectively. The SEM image of YSZ film on CeO$_2$/Ni showed surface morphologies without microcrack.k.

  • PDF

Synthesis and Exchange Properties of Sulfonated Poly(phenylene sulfide) with Alkali Metal Ions in Organic Solvents

  • 손원근;김상헌;박수길
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권1호
    • /
    • pp.53-58
    • /
    • 2001
  • Sulfonated poly(phenylene sulfide) (SPPS) polymers were prepared by sulfonation of poly[methyl[4-(phenylthio) phenyl]sulfonium trifluoromethanesulfonate] (PPST) with fumic sulfonic acid (10% $SO_3-H_2SO_4$) and demethylation with aqueous NaOH solution. The equilibrium constants of ion exchange reactions between alkali metal cations ($Li^+,\;Na^+,\;and\;K^+$) and SPPS ion exchanger in organic solvents such as tetrahydrofuran (THF) and dioxane were measured. The equilibrium constants of ion exchange reactions increased as the polarity of the solvent increased, and the reaction temperature decreased. The equilibrium constants of the ion exchange reaction ($K_{eq}$) also increased in the order of $Li^+,\;Na^+,\;and\;K^+$. To elucidate the spontaneity of the exchange reaction in organic solvents, the enthalpy, entropy, and Gibbs free energy were calculated. The enthalpy of reaction ranged from -0.88 to -1.33 kcal/mol, entropy ranged from 1.42 to 4.41 cal/Kmol, and Gibbs free energy ranged from -1.03 to -2.55 kcal/mol. Therefore, the exchange reactions were spontaneous because the Gibbs free energies were negative. The SPPS ion exchanger and alkali metal ion bounding each other produced good ion exchange capability in organic solvents.

Reduction of Representative Organic Functional Groups with Gallane-Trimethylamine

  • 최정훈;오영주;김민정;황북기;백대진
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권3호
    • /
    • pp.274-280
    • /
    • 1997
  • The rates and stoichiometry of the reaction of gallane-trimethylamine with selected organic compounds containing representative functional groups were examined in tetrahydrofuran solution under standardized conditions (THF, 0 ℃). And its reducing characteristics were compared with those of aluminum hydride-triethylamine(AHTEA). The rate of hydrogen evolution from active hydrogen compounds varied considerably with the nature of the functional group and the structure of the hydrocarbon moiety. Alcohols, phenol, amines, thiols evolved hydrogen rapidly and quantitatively. Aldehydes and ketones were reduced moderately to the corresponding alcohols. Cinnamaldehyde was reduced to cinnamyl alcohol, which means that the conjugated double bond was not attacked by gallane-trimethylamine. Carboxylic acids, esters, and lactones were stable to the reagent under standard conditions. Acid chlorides also were rapidly reduced to the corresponding alcohols. Epoxides and halides were inert to the reagent. Caproamide and nitrile were stable to the reagent, whereas benzamide was rapidly reduced to benzylamine. Nitropropane, nitrobenzene and azoxybenzene were stable to the reagent, whereas azobenzene was reduced to 1,2-diphenylhydrazine. Oximes and pyridine N-oxide were reduced rapidly. Di-n-butyl disulfide and dimethyl sulfoxide were reduced only slowly, but diphenyl disulfide was reduced rapidly. Finally, sulfones and sulfonic acids were inert to the reagent under the reaction.

겔 투과 크로마토그래피에서 폴리스티렌 혼성중합체들의 용리거동에 관한 연구 (A Study on Elution Behavior of Polystyrene Copolymers in Gel Permeation Chromatography)

  • 이대운;음철헌
    • 대한화학회지
    • /
    • 제36권1호
    • /
    • pp.87-94
    • /
    • 1992
  • 본 연구는 폴리스티렌(PS), 폴리메틸메타크릴레이트(PMMA), 및 폴리부타디엔(PB) 등 동종 중합체들(homopolymers), 그리고 폴리스티렌-폴리메틸메타크릴레이트 block 혼성중합체들(SM block copolymers) 및 스티렌-폴리부타디엔 star shaped 혼성중합체들(PS-PB star shaped copolymers)을 선택하여 다리걸친 폴리스티렌 겔 상에서의 용리거동을 비교 조사하였다. 선택한 이동상으로는 테트라히드로퓨란(THF), 톨루엔(TOL), 클로로포름(CHL), 메틸렌클로라이드(MC), 테트라히드로퓨란-시클로헥산(CH) 혼합용매의 5가지 시스템이며, 이동상 변화에 따른 시료들의 hydrodynamic 부피와 머무른 부피 사이에 플롯의 이동에 관한 현상을 조사하였으며, 또한 시료의 머무름을 예측하기 위해 다중 다단계 회귀분석(multiple stepwise regression analysis)을 수행한 결과, 각 중합체들에 대한 적절한 크기 파라미터를 찾았다. 또한, network-limited 분리 메카니즘에 의해 GPC에서 시료와 겔사이의 상호작용에 대한 분포계수 $K_p$를 각 이동상 시스템에서 구하였는데, PS와 PB의 kp값은 거의 1에 가까운 값을 나타내었고 PMMA인 경우는 적합 용매에서는 분자량이 증가할수록 $K_p$값은 다소 감소하였으나 부적합 용매에서는 분자량이 증가함에 따라 $K_p$값은 함께 증가하였다. 혼성중합체의 $K_p$값은 조성 및 분자량에 따라 달라짐을 알 수 있었고, 이로부터 SM block 혼합중합체의 형태는 무작정상(random phase)을 가지는 것으로 예측된다. 아울러 $K_p$값을 이용하여 동종중합체 및 폴리스티렌 혼성중합체들의 분자량을 측정하기 위해 이들의 새로운 머무름 파라미터$(V_r-V_o)/K_p$와 log[η]M을 플룻을 한 결과 좋은 직선성을 보이는 하나의 보편적 검정곡선을 얻었다.

  • PDF

대학 실험실에서의 유기화합물 노출에 의한 건강위험성 평가에 관한 연구 (A Study on Health Risk Assessment by Exposure to Organic Compounds in University Laboratory)

  • 심상효;원정일;전하섭;김도원
    • 한국학교ㆍ지역보건교육학회지
    • /
    • 제22권4호
    • /
    • pp.49-60
    • /
    • 2021
  • Objectives: Laboratories have various latent physical, chemical, biological, and ergonomical factors according to the diversification and fusion of research and development activities. This study aims to investigate the chemical exposure concentrations of college laboratories and evaluate their health risks, and use them as basic data to promote the health of college students. Methods: The sampling and analysis of harmful chemicals in the air in laboratories were performed using Method 1500 of the U.S. National Institute for Occupational Safety and Health (NIOSH)의 Method 1500. The harmful chemicals in the laboratories were divided into carcinogenic and non-carcinogenic chemicals. Risk assessment was performed using the cancer risk (CR) for carcinogenic chemicals and using the hazard index (HI) for non-carcinogenic chemicals. Results: The harmful chemicals in college laboratories consisted of acetone, diethyl ether, methylene chloride, n-hexane, ethyl acetate, chloroform, tetrahydrofuran, toluene, and xylenes. They showed the highest concentrations in laboratories A (acetone 0.001~2.34ppm), B (chloroform 0.95~6.35ppm), C (diethyl ether 0.08~8.68ppm), and D (acetone 0.07~14.96ppm). The risk assessment result for non-carcinogenic chemicals showed that the HI of methylene chloride was 2.052 for men and 2.333 for women, the HI of N-hexane was 4.442 for men and 5.05 for women. Thus, the HI values were higher than 1. The risk of carcinogenic chemicals is determined by an excess cancer risk (ECR) value of 1.0×10-5, which means that one in 100,000 people has a cancer risk. The ECRs of chloroform exceeded 1.0×10-5 for both men and women, indicating the possibility of cancer risk. Conclusion: College laboratories showed the possibility of non-carcinogenic health risks for methylene chloride, n-hexane, tetrahydrofuran (THF), toluene, and xylenes, and carcinogenic health risks for chloroform, methylene chloride. However, this study used the maximum values of measurements to determine the worst case, and assumed that the subjects were exposed to the corresponding concentrations continuously for 8 hours per day for 300 days per year. In consideration of the nature of laboratory environment in which people are intermittently exposed, rather than continuously, to the chemicals, the results of this study has an element of overestimation.

메조페이스 핏치로부터 균질한 다공성 탄소 제조 및 이를 이용한 직접 메탄올 연료전지의 촉매 담지체 특성 (Preparation of Uniform Porous Carbon from Mesophase Pitch and Its Characteristics of Catalyst Support for the Direct Methanol Fuel Cell)

  • 남기돈;김태진;김상경;이병록;백동현;유승곤;정두환
    • 공업화학
    • /
    • 제17권2호
    • /
    • pp.223-228
    • /
    • 2006
  • 직접 메탄올 연료전지에서 촉매 담지체로서 세공 크기별 균질한 다공성 탄소는 메조페이스 핏치와 졸-겔법으로 직접 합성한 구형 실리카를 이용하여 제조하였다. Tetrahydrofuran (THF)에 용해된 핏치와 메탄올에 분산된 구상의 실리카를 혼합하고 탄화한 후에 5 M NaOH로 실리카를 식각하여 다공성 탄소를 만들었다. 이 다공성탄소의 비표 면적은 사용된 구형 실리카의 입자 크기가 작을수록 증가하였으며, $14.7{\sim}87.7m^2/g$ 범위를 나타내었다. 평균 기공 직경 또한 사용된 실리카 입자크기에 따라 50~550 nm로 다양하게 나타났다. 다공성 탄소 담지체에 백금과 루테늄을 담지시키기 위해 액상환원법을 사용하였고, 60 wt% 백금-루테늄이 담지된 촉매의 전기 산화 활성 및 전극 성능 특성은 순환 전압 전류법과 단위전지 시험으로 평가하였다. 본 실험 범위 중 50 nm 실리카를 이용하여 제조한 백금-루테늄/다공성탄소의 경우(60 wt% Pt-Ru/porous carbon), 순환 전압 전류법 시험에서 0.4 V에서의 전류 밀도 값이 $123mA/cm^2$가 측정되었고, 단위전지 성능 시험에서는 최대 전력 밀도 값이 $60^{\circ}C$$80^{\circ}C$, 산소분위기에서 각각 105, $162mW/cm^2$를 나타내었다.

수소화붕소아연에 의한 선택환원. 수소화붕소아연의 대표적 유기화합물과의 반응 (Selective Reduction with Zinc Borohydride. Reaction of Zinc Borohydride with Selected Organic Compounds Containing Representative Functional Groups)

  • 윤능민;이호준;김혜규;강재효
    • 대한화학회지
    • /
    • 제20권1호
    • /
    • pp.59-72
    • /
    • 1976
  • 수소화붕소아연의 선택환원성을 조사하기 위하여 대표적 유기화합물 54종을 택하여 수소화붕소 아연과 일정한 조건 (THF 용액, 실온, 수소화이온의 농도 : 0.5M, 유기화합물의 농도 : 0.125M)하에서 반응시켜 대략의 반응속도와 정량관계를 알아보았다.

  • PDF

점착특성을 갖는 내열 폴리이미드/폴리실록산 이중층 필름 제조 연구 (Preparation of Thermostable Polyimide/Polysiloxane Double Layered Films with Pressure-sensitive Adhesion Property)

  • 권은진;정현민
    • 폴리머
    • /
    • 제38권4호
    • /
    • pp.544-549
    • /
    • 2014
  • 이중층 필름 구조로서 상부에 폴리실록산 층과 하부에 폴리이미드 층을 갖는 내열 점착 필름을 제조하였다. 이중층 필름제조 과정에서 폴리실록산이 용해된 tetrahydrofuran(THF) 용액이 폴리이미드 층 상부에 도포된 이후, 상온~$80^{\circ}C$ 온도범위에서 에이징(aging) 과정을 거쳐 두 층 사이에서 나노 상분리에 의한 도메인이 500 nm 두께의 중간층으로 형성되었고 이에 대한 모폴로지는 투과전자현미경을 통해 조사되었다. 이러한 중간층 형성을 통해 상부 폴리실록산은 균일하고 안정적 층을 형성함으로 재현성 있는 점착특성을 나타내었으며, $300^{\circ}C$ 처리에서도 8-13 g/inch의 점착성질을 나타내었다. 또한 이중층 폴리이미드/폴리실록산과 나노 도메인 중간층 구조를 갖는 필름은 안정된 단일 박막으로 얻어지며 $435^{\circ}C$의 높은 열분해 온도를 가지고, $300^{\circ}C$에서 점착특성이 유지되는 결과를 보여 마이크로일렉트로닉스의 공정 조건에 적합한 활용 가능성을 보였다.

Glucose Oxidase 고정화에 대한 전기화학적/광학적 분석 (Spectro-electrochemical Analyses of Immobilization of Glucose Oxidase)

  • 김현철;조영재;구할본;사공건
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.316-319
    • /
    • 2000
  • In the case of immobilizing of glucose oxidase into polypyrrole (PPy) using electrosynthesis, the glucose oxidase (GOx) forms a coordinate bond with the polymer's backbone. However, because of intrinsic insulation and net-chain of the enzyme, the charge transfer and mass transport are obstructed during the film growth. Therefore, the film growth is dull. We synthesized the enzyme electrode by electropolymerization added some organic solvent, A formative seeds of film growth is delayed by adding the solvent. The delay is induced by radical transfer between the solvent and pyrrole monomer. In the case of adding ethanol, the radical transfer shares the contribution of dopant between electrolyte anion and GOx polyanion. This may lead to increase amount of immobilized the enzyme in ppy. However, adding tetrahydrofuran (THF), the radical transfer is more brisk, resulting in short chained polymer. Therefore, the doping level is lowered and then amount of immobilized of enzyme is decreased. For the UV absorption spectra of synthetic solution before synthesis and after, in the case of ethanol added, the optical density was slightly decreased for the GOx peaks. It suggests amount of GOx in the solution was decreased and amount of GOx in the film was increased. We established qualitatively that amount of immobilization can be improved by adding a little ethanol in the synthetic solution. It is due to radical transfer reaction. The radical transfer shares the contribution of dopant between small and fast electrolyte anion and big and slow GOx polyanion.

  • PDF

Voltammetric Studies on Some Thiadiazoles and Their Derivatives

  • Maghraby, A. A. El;Abou-Elenien, G. M.;Rateb, N. M;Abdel-Tawab, H. R.
    • 전기화학회지
    • /
    • 제12권1호
    • /
    • pp.54-60
    • /
    • 2009
  • The redox characteristics of 2-arylaldehydehydrazono-3-phenyl-5-substituted-2, 3-dihydro-1, 3, 4-thiadiazoles (1a-h) have been investigated in nonaqueous solvents such as 1, 2-dichloroethane (DCE), dichloromethane (DCM), acetonitrile (AN), Tetrahydrofuran (THF), and dimethylsulfoxide (DMSO) at platinum electrode. Through controlled potential electrolysis, the oxidation and reduction products of the investigated compounds had been separated and indentified. The redox mechanism had been suggested and proved. It had been found that all the investigated compounds were oxidized in two irreversible one-electron processes following the well-known pattern of The EC-mechanism; the first electron loss gives the corresponding cation-radical which is followed by proton removal from the ortho-position in the N-phenyl ring forming the radical. The obtained radical undergoes a second electron uptake from the nitrogen in the N = C group forming the unstable intermediate (di-radical cation) which undergoes ring closure forming the corresponding cation. The formed cation was stabilized in solution through its combination with a perchlorate anion from the medium. On the other hand, these compounds are reduced in a single two-electron process or in a successive two one-electron processes following the well known pattern of the EEC-mechanism according to the nature of the substituent; the first one gives the anion-radical followed by a second electron reduction to give the dianion which is basic enough to abstract protons from the media to saturate the (C = O) bond.