• Title/Summary/Keyword: Tet-Off model

Search Result 5, Processing Time 0.016 seconds

Cell-Based Screen Using Amyloid Mimic β23 Expression Identifies Peucedanocoumarin III as a Novel Inhibitor of α-Synuclein and Huntingtin Aggregates

  • Ham, Sangwoo;Kim, Hyojung;Hwang, Seojin;Kang, Hyunook;Yun, Seung Pil;Kim, Sangjune;Kim, Donghoon;Kwon, Hyun Sook;Lee, Yun-Song;Cho, MyoungLae;Shin, Heung-Mook;Choi, Heejung;Chung, Ka Young;Ko, Han Seok;Lee, Gum Hwa;Lee, Yunjong
    • Molecules and Cells
    • /
    • v.42 no.6
    • /
    • pp.480-494
    • /
    • 2019
  • Aggregates of disease-causing proteins dysregulate cellular functions, thereby causing neuronal cell loss in diverse neurodegenerative diseases. Although many in vitro or in vivo studies of protein aggregate inhibitors have been performed, a therapeutic strategy to control aggregate toxicity has not been earnestly pursued, partly due to the limitations of available aggregate models. In this study, we established a tetracycline (Tet)-inducible nuclear aggregate (${\beta}23$) expression model to screen potential lead compounds inhibiting ${\beta}23$-induced toxicity. High-throughput screening identified several natural compounds as nuclear ${\beta}23$ inhibitors, including peucedanocoumarin III (PCIII). Interestingly, PCIII accelerates disaggregation and proteasomal clearance of both nuclear and cytosolic ${\beta}23$ aggregates and protects SH-SY5Y cells from toxicity induced by ${\beta}23$ expression. Of translational relevance, PCIII disassembled fibrils and enhanced clearance of cytosolic and nuclear protein aggregates in cellular models of huntingtin and ${\alpha}$-synuclein aggregation. Moreover, cellular toxicity was diminished with PCIII treatment for polyglutamine (PolyQ)-huntingtin expression and ${\alpha}$-synuclein expression in conjunction with 6-hydroxydopamine (6-OHDA) treatment. Importantly, PCIII not only inhibited ${\alpha}$-synuclein aggregation but also disaggregated preformed ${\alpha}$-synuclein fibrils in vitro. Taken together, our results suggest that a Tet-Off ${\beta}23$ cell model could serve as a robust platform for screening effective lead compounds inhibiting nuclear or cytosolic protein aggregates. Brain-permeable PCIII or its derivatives could be beneficial for eliminating established protein aggregates.

Produce a Novel Breast Cancer Disease Model with Test-off System

  • Park, Jun-Hong;Lee, Eun-Ju;Kim, Myoung-Ok;Kim, Sung-Hyun;Park, Jung-Ok;Cho, Kyong-In;Park, Hum-Dai;Ryoo, Zae-Young
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.93-93
    • /
    • 2002
  • The utility of transgenic animal for studying the function of a particular gene in the breast system has been limited because transgenic typically occurs constitutively throughout development and in most tissue. So we use the inducible gene expression system. Several inducible gene expression system have been developed in vitro in recent years to overcome limitation with transgenic mice. (omitted)

  • PDF

Novel Disease Model of Chronic Neutrophilic Leukemia: by Using the Tet-off System

  • Park, Jun-Hong;Lee, Young-Soon;Ryoo, Zae-Young
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.107-107
    • /
    • 2003
  • The activation of protooncogenes or the inactivation of their gene products may be a specific and effective functional study for human neoplasia. To examine this possibility, we have used the tetracycline regulatory system to generate transgenic mice that conditionally express the HccR-2 protooncogene in vivo. The new human cervical cancer protooncogene (HccR-2) was detected from cervical cancer cell line. To elucidate its biological functions, we generated transgenic mice that expressed the HccR-2 gene. The sustained expression of the HccR-2 transgene culminated chronic neutrophilic leukemia (CNL). CNL is a rare chronic myeloproliferative disorder that presents as a sustained, mature neutrophilic leukocytosis with few or no circulating immature granulocytes, the absence of peripheral blood monocytosis, basophilia, or eosinophilia, and infiltration of neutrophils at the liver, spleen and kidney. Mice expressing the HccR-2 and tetracycline-transactivating protein (tTa) transgene were found to have altered myeloid development that was characterized by increased percentages of mature neutrophil and band form neutrophil in the peripheral blood, liver and spleen. Activation of the transgene causes CNL. In our model, expression of HccR-2 transgene mice was similar in many respects to the human CNL. This model will be valuable not only for investigating the biological properties of the HccR-2 and other protooncogenes in vivo but also for analyzing the mechanism involved in the progression of CNL.

  • PDF

Production of the Novel Disease Animal Model by Used Tet-off System

  • Park, Jun-Hong;Kim, Kil-Soo;Lee, Eun-Ju;Kim, Myoung-Ok;Kim, Sung-Hyun;Kyoungin-Cho;Jung, Boo-Kyung;Kim, Hee-Chul;Sol ha Hwang
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.54-54
    • /
    • 2003
  • The activation of protooncogenes or the inactivation of their gene products may be a specific and effective functional study for human neoplasia. To examine this possibility, we have used the tetracycline regulatory system to generate transgenic mice that conditionally express the HccR-2 protooncogene in vivo. The new human cervical cancer protooncogene (HccR-2) was detected from cervical cancer cell line. To elucidate its biological functions, we generated transgenic mice that expressed the HccR-2 gene. The sustained expression of the HccR-2 transgene culminated chronic neutrophilic leukemia (CNL). CNL is a rare chronic myeloproliferative disorder that presents as a sustained, mature neutrophilic leukocytosis with few or no circulating immature granulocytes, the absence of peripheral blood monocytosis, basophilia, or eosinophilia, and infiltration of neutrophils at the liver, spleen and kidney. Mice expressing the HccR-2 and tetracycline-transactivating protein (tTa) transgene were found to have altered myeloid development that was characterized by increased percentages of mature neutrophil and band form neutrophil in the peripheral blood, liver and spleen. Activation of the transgene causes CNL. In our model, expression of HccR-2 transgene mice was similar in many respects to the human CNL. This model will be valuable not only for investigating the biological properties of the HccR-2 and other protooncogenes in vivo but also for analyzing the mechanism involved in the progression of CNL.

  • PDF