• Title/Summary/Keyword: Testing-Domain Function

Search Result 43, Processing Time 0.025 seconds

A Study on Software Reliability Growth Model for Isolated Testing-Domain under Imperfect Debugging (불완전수정에서 격리된 시험영역에 대한 소프트웨어 신뢰도 성장모형 연구)

  • Nam, Kyung-H.;Kim, Do-Hoon
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.3
    • /
    • pp.73-78
    • /
    • 2006
  • In this paper, we propose a software reliability growth model based on the testing domain in the software system, which is isolated by the executed test cases in software testing. In particular, our model assumes an imperfect debugging environment in which new faults are introduced in the fault-correction process, and is formulated as a nonhomogeneous Poisson process(NHPP). Further, it is applied to fault-detection data, the results of software reliability assessment are shown, and comparison of goodness-of-fit with the existing software reliability growth model is performed.

Generalization of the Testing-Domain Dependent NHPP SRGM and Its Application

  • Park, J.Y.;Hwang, Y.S.;Fujiwara, T.
    • International Journal of Reliability and Applications
    • /
    • v.8 no.1
    • /
    • pp.53-66
    • /
    • 2007
  • This paper proposes a new non-homogeneous Poisson process software reliability growth model based on the coverage information. The new model incorporates the coverage information in the fault detection process by assuming that only the faults in the covered constructs are detectable. Since the coverage growth behavior depends on the testing strategy, the fault detection process is first modeled for the general testing strategy and then realized for the uniform testing. Finally the model for the uniform testing is empirically evaluated by applying it to real data sets.

  • PDF

Transient Analysis of Electromagnetic Scattering From Dielectric Objects Using Time-Domain Magnetic Field Integral Equation (시간영역 자장 적분방정식을 이용한 유전체의 전자파 산란 과도해석)

  • 서정훈;정백호;한상호;안현수
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.412-417
    • /
    • 2003
  • In this Paper, we propose a time-domain magnetic field integral equation (TD-MFIE) formulation for analyzing the transient electromagnetic response from three-dimensional (3-D) dielectric bodies. The solution method in this paper is based on the Galerkin's method that involves separate spatial and temporal testing procedures. Triangular patch basis functions are used for spatial expansion and testing functions for arbitrarily shaped 3-D dielectric structures. The time-domain unknown coefficients of the equivalent electric and magnetic currents are approximated tv a set of orthonormal basis function that is derived from the Laguerre polynomials. These basis functions are also used for the temporal testing. Numerical results computed by the proposed method are presented and compared.

Estimating the Failure Rate of a Large Scaled Software in Multiple Input Domain Testing (다중입력영역시험에서의 대형 소프트웨어 고장률 추정 연구)

  • 문숙경
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.3
    • /
    • pp.186-194
    • /
    • 2002
  • In this paper we introduce formulae for estimating the failure rate of a large scaled software by using the Bayesian rule when a black-box random testing which selects an element(test case) at random with equally likely probability, is performed. A program or software can be treated as a mathematical function with a well-defined (input)domain and range. For a large scaled software, their input domains can be partitioned into multiple subdomains and exhaustive testing is not generally practical. Testing is proceeding with selecting a subdomain, and then picking a test case from within the selected subdomain. Whether or not the proportion of selecting one of the subdomains is assumed probability, we developed the formulae either case by using Bayesian rule with gamma distribution as a prior distribution.

Characterization of Flaws in the Elastic Medium by Time Domain Born Approximation (시간 정의구역 Born 근사에 의한 탄성매질에서의 결함에 관한 연구)

  • Yi, J.Y.;Lee, S.K.;Lee, J.O.;Kim, Y.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.3 no.1
    • /
    • pp.5-11
    • /
    • 1983
  • The impulse response function are studied using time domain Born approximation in two cases; firstly when the material parameters of a flaw are constant, secondly when the parameters are varying with positions. From the impulse response functions, characteristics can be learned about a flaw with high symmetry.

  • PDF

Unconditionally Stable Analysis of Transient Scattering from Conductors Using Time-Domain Combined Field Integral Equations (시간영역 결합적분식을 이용한 도체 과도산란의 무조건 안정된 해석)

  • 정백호;서정훈;이원우
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.8
    • /
    • pp.340-348
    • /
    • 2003
  • In this paper, we propose a novel formulation to solve a time-domain combined field integral equation (CFIE) for analyzing the transient electromagnetic scattering response from closed conducting bodies. Instead of the conventional marching-on in time (MOT) technique, tile solution method in this paper is based on the moment method that involves separate spatial and temporal testing procedures. Triangular patch vector functions are used for spatial expansion and testing functions for three-dimensional arbitrarily shaped closed structures. The time-domain unknown coefficient is approximated as a basis function set that is derived from tile Laguerre functions with exponentially decaying functions. These basis functions are also used as the temporal testing. Numerical results computed by the proposed method arc stable without late-time oscillations and agree well with the frequency-domain CFIE solutions.

Time Domain Combined Field Integral Equation for Transient Electromagnetic Scattering from Dielectric Body (유전체의 전자기 과도산란 해석을 위한 시간영역 결합 적분방정식)

  • Kim Chung-Soo;An Hyun-Su;Park Jae-Kwon;Jung Baek-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.12
    • /
    • pp.626-633
    • /
    • 2004
  • In this paper, we present a time domain combined field integral equation (TD-CFIE) formulation to analyze the transient electromagnetic response from three-dimensional dielectric objects. The solution method in this paper is based on the method of moments (MoM) that involves separate spatial and temporal testing procedures. A set of the RWG (Rao, Wilton, Glisson) functions Is used for spatial expansion of the equivalent electric and magnetic current densities and a combination of RWG and its orthogonal component is used as spatial testing. We also investigate spatial testing procedures for the TD-CFIE to select the proper testing functions that are derived from the Laguerre polynomials. These basis functions are also used for temporal testing. Use of this temporal expansion function characterizing the time variable enables one to handle the time derivative terms in the integral equation and decouples the space-time continuum in an analytic fashion. Numerical results computed by the proposed formulation are presented and compared with the solutions of the frequency domain combined field integral equation (FD-CFIE).

An Imperfect Debugging Software Reliability Growth Model with Change-Point (변화점을 갖는 불완전수정 소프트웨어 신뢰도 성장모형 연구)

  • Nam, Kyung-H.;Kim, Do-Hoon
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.4
    • /
    • pp.133-138
    • /
    • 2006
  • In this paper, we propose a software reliability growth model (SRGM) based on the testing domain, which is isolated by the executed test cases. This model assumes an imperfect debugging environment in which new faults are introduced in the fault-correction process. We consider that the fault detection rate of NHPP model is changed in the proposed SRGM. We obtain the maximum likelihood estimate, and compare goodness-of-fit with another existing software reliability growth model.

TD-CFIE Formulation for Transient Electromagnetic Scattering from 3-D Dielectric Objects

  • Lee, Young-Hwan;Jung, Baek-Ho;Sarkar, Tapan K.;Yuan, Mengtao;Ji, Zhong;Park, Seong-Ook
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.8-17
    • /
    • 2007
  • In this paper, we present a time domain combined field integral equation formulation (TD-CFIE) to analyze the transient electromagnetic response from dielectric objects. The solution method is based on the method of moments which involves separate spatial and temporal testing procedures. A set of the RWG functions is used for spatial expansion of the equivalent electric and magnetic current densities, and a combination of RWG and its orthogonal component is used for spatial testing. The time domain unknowns are approximated by a set of orthonormal basis functions derived from the Laguerre polynomials. These basis functions are also used for temporal testing. Use of this temporal expansion function characterizing the time variable makes it possible to handle the time derivative terms in the integral equation and decouples the space-time continuum in an analytic fashion. Numerical results computed by the proposed formulation are compared with the solutions of the frequency domain combined field integral equation.

  • PDF

Thermographic Detection of Surface Crack Using Holomorphic Function of Thermal Field

  • Kim, No-Hyu;Lim, Zong-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.296-301
    • /
    • 2012
  • This paper describes an analytic method for infrared thermography to detect surface cracks in thin plates. Traditional thermographic method uses the spatial contrast of a thermal field, which is often corrupted by noise in the experiment induced mainly by emissivity variations of target surfaces. This study developed a robust analytic approach to crack detection for thermography using the holomorphic function of a temperature field in thin plate under steady-state thermal conditions. The holomorphic function of a simple temperature field was derived for 2-D heat flow in the plate from Cauchy-Riemann conditions, and applied to define a contour integral that varies depending on the existence and strength of singularity in the domain of integration. It was found that the contour integral at each point of thermal image reduced the noise and temperature variation due to heat conduction, so that it provided a clearer image of the singularity such as cracks.