• Title/Summary/Keyword: Testing Normality

Search Result 87, Processing Time 0.025 seconds

STATISTICAL CONCEPTS AND TECHNIQUES FOR TESTING DEPARTURES FROM NORMALITY IN THE MATHEMATICS TEACHER PREPARATION

  • Lee, Sang-Gone
    • Honam Mathematical Journal
    • /
    • v.29 no.1
    • /
    • pp.83-100
    • /
    • 2007
  • Normality is one of the most common assumptions made in sampling and statistical inference procedures without suffering from lack of attention. Its results may lead to an invalid conclusion. We present several testing procedures that can be used to evaluate the effects of departure from normality using concrete examples by hand or with the aid of Minitab. The goal is to influence prospective teachers in order to learn statistical concepts and techniques for testing normality on the basis of the didactical theory.

Goodness-of-Fit-Test from Censored Samples

  • Cho, Young-Suk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.41-52
    • /
    • 2006
  • Because most common assumption is normality in statistical analysis, testing normality is very important. The Q-Q plot is a powerful tool to test normality with full samples in statistical package. But the plot can't test normality in type-II censored samples. This paper proposed the modified the Q-Q plot and the modified normalized sample Lorenz curve(NSLC) for normality test in the type-II censored samples. Using the two Hodgkin's disease data sets and the type-II censored samples, we picture the modified Q-Q plot and the modified normalized sample Lorenz curve.

  • PDF

Goodness-of-Fit Test for the Normality based on the Generalized Lorenz Curve

  • Cho, Youngseuk;Lee, Kyeongjun
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.4
    • /
    • pp.309-316
    • /
    • 2014
  • Testing normality is very important because the most common assumption is normality in statistical analysis. We propose a new plot and test statistic to goodness-of-fit test for normality based on the generalized Lorenz curve. We compare the new plot with the Q-Q plot. We also compare the new test statistic with the Kolmogorov-Smirnov (KS), Cramer-von Mises (CVM), Anderson-Darling (AD), Shapiro-Francia (SF), and Shapiro-Wilks (W) test statistic in terms of the power of the test through by Monte Carlo method. As a result, new plot is clearly classified normality and non-normality than Q-Q plot; in addition, the new test statistic is more powerful than the other test statistics for asymmetrical distribution. We check the proposed test statistic and plot using Hodgkin's disease data.

Testing Whether Failure Rate Changes its Trend Using Censored Data

  • Jeong, Hai-Sung;Na, Myung-Hwan;Kim, Jae-Joo
    • International Journal of Reliability and Applications
    • /
    • v.1 no.2
    • /
    • pp.115-121
    • /
    • 2000
  • The trend change in aging properties, such as failure rate and mean residual life, of a life distribution is important to engineers and reliability analysts. In this paper we develop a test statistic for testing whether or not the failure rate changes its trend using censored data. The asymptotic normality of the test statistics is established. We discuss the efficiency values of loss due to censoring.

  • PDF

CONSISTENT AND ASYMPTOTICALLY NORMAL ESTIMATORS FOR PERIODIC BILINEAR MODELS

  • Bibi, Abdelouahab;Gautier, Antony
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.889-905
    • /
    • 2010
  • In this paper, a distribution free approach to the parameter estimation of a simple bilinear model with periodic coefficients is presented. The proposed method relies on minimum distance estimator based on the autocovariances of the squared process. Consistency and asymptotic normality of the estimator, as well as hypotheses testing, are derived. Numerical experiments on simulated data sets are presented to highlight the theoretical results.

Test of Normality Based on the Normalized Sample Lorenz Curve

  • Kang, Suk-Bok;Cho, Young-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.851-858
    • /
    • 2001
  • Using the normalized sample Lorenz curve which is introduced by Kang and Cho (2001), we propose the test statistics for testing of normality that is very important test in statistical analysis and compare the proposed test with the other tests in terms of the power of test through by Monte Carlo method. The proposed test is more power than the other tests except some cases

  • PDF

A Test of Multivariate Normality Oriented for Testing Elliptical Symmetry

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.221-231
    • /
    • 2006
  • A chi-squared test of multivariate normality is suggested which is oriented for detecting deviations from elliptical symmetry. We derive the limiting distribution of the test statistic via a central limit theorem on empirical processes. A simulation study is conducted to study the accuracy of the limiting distribution in finite samples. Finally, we compare the power of our method with those of other popular tests of multivariate normality under a non-normal distribution.

  • PDF

More Powerful Test for Normality Based on the Normalized Sample Lorenz Curve (NORMALIZED SAMPLE LORENZ CURVE를 이용한 검정력이 높은 정규성 검정)

  • 강석복;조영석
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.415-421
    • /
    • 2002
  • Because most common assumption is normality in statistical analysis, testing normality is very important. We propose a new plot and test statistic to test for normality based on the modified Lorenz curve that is proved to be a powerful tool to measure the income inequality within a population of income receivers. We also compare the proposed test statistics with the W test (Shapiro and Wilk (1965)), TL test (Kang and Cho (1999)) in terms of the power of test through by Monte Carlo method. The proposed test is more usually powerful than the other tests except some case.

A Generalized Procedure to Extract Higher Order Moments of Univariate Spatial Association Measures for Statistical Testing under the Normality Assumption (일변량 공간 연관성 측도의 통계적 검정을 위한 일반화된 고차 적률 추출 절차: 정규성 가정의 경우)

  • Lee, Sang-Il
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.2
    • /
    • pp.253-262
    • /
    • 2008
  • The main objective of this paper is to formulate a generalized procedure to extract the first four moments of univariate spatial association measures for statistical testing under the normality assumption and to evaluate the viability of hypothesis testing based on the normal approximation for each of the spatial association measures. The main results are as follows. First, predicated on the previous works, a generalized procedure under the normality assumption was derived for both global and local measures. When necessary matrices are appropriately defined for each of the measures, the generalized procedure effectively yields not only expectation and variance but skewness and kurtosis. Second, the normal approximation based on the first two moments for the global measures fumed out to be acceptable, while the notion did not appear to hold to the same extent for their local counterparts mainly due to the large magnitude of skewness and kurtosis.

The Limit Distribution of an Invariant Test Statistic for Multivariate Normality

  • Kim Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.71-86
    • /
    • 2005
  • Testing for normality has always been an important part of statistical methodology. In this paper a test statistic for multivariate normality is proposed. The underlying idea is to investigate all the possible linear combinations that reduce to the standard normal distribution under the null hypothesis and compare the order statistics of them with the theoretical normal quantiles. The suggested statistic is invariant with respect to nonsingular matrix multiplication and vector addition. We show that the limit distribution of an approximation to the suggested statistic is representable as the supremum over an index set of the integral of a suitable Gaussian process.