• Title/Summary/Keyword: Test-day Records

Search Result 105, Processing Time 0.019 seconds

Estimation of Genetic Parameters for First Lactation Monthly Test-day Milk Yields using Random Regression Test Day Model in Karan Fries Cattle

  • Singh, Ajay;Singh, Avtar;Singh, Manvendra;Prakash, Ved;Ambhore, G.S.;Sahoo, S.K.;Dash, Soumya
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.6
    • /
    • pp.775-781
    • /
    • 2016
  • A single trait linear mixed random regression test-day model was applied for the first time for analyzing the first lactation monthly test-day milk yield records in Karan Fries cattle. The test-day milk yield data was modeled using a random regression model (RRM) considering different order of Legendre polynomial for the additive genetic effect (4th order) and the permanent environmental effect (5th order). Data pertaining to 1,583 lactation records spread over a period of 30 years were recorded and analyzed in the study. The variance component, heritability and genetic correlations among test-day milk yields were estimated using RRM. RRM heritability estimates of test-day milk yield varied from 0.11 to 0.22 in different test-day records. The estimates of genetic correlations between different test-day milk yields ranged 0.01 (test-day 1 [TD-1] and TD-11) to 0.99 (TD-4 and TD-5). The magnitudes of genetic correlations between test-day milk yields decreased as the interval between test-days increased and adjacent test-day had higher correlations. Additive genetic and permanent environment variances were higher for test-day milk yields at both ends of lactation. The residual variance was observed to be lower than the permanent environment variance for all the test-day milk yields.

The Effect of the Incomplete Lactation Records for Genetic Evaluations with Random Regression Test-Day Models (RRTDM) in Holstein Cattle (불완전 검정일 기록이 RRTDM을 이용한 홀스타인 젖소의 유전평가에 미치는 영향)

  • Cho, J.H.;Cho, K.H.;Lee, K.J.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.147-158
    • /
    • 2005
  • The purpose of this study was to find out the effects that daughters' incomplete lactation records affect sire's breeding values through genetic evaluation using RRTDM(random regression test-day model). First, we estimated genetic parameters and breeding values on sires having complete lactation records of daughter by RRTDM, second, we changed complete lactation records of specific sires into incomplete records by various methods. Third, the breeding values were compared between complete and incomplete records. Finally, this study aimed to find out the methods to minimize the estimation errors of young bulls' breeding values. Data used in this study were collected from the dairy herd improvement program, and a total of 97,562 records were composed of 10,929 first parity with both parents known, since 1999. Breeding values on the daughters from randomly chosen sires were calculated and compared with among 90 day, 150day, and 200 day's incomplete records. For milk yields, sire's ranks of breeding values used by complete lactation records were very different from sire's ranks of breeding values obtained by incomplete lactation records(Rank_90 cut, 150cut, 200 cut).The differences were also obtained between complete lactation records(per305_full) and incomplete lactation record (per_90 cut, 150cut, 200 cut) in breeding values regarding persistency. Especially, the differences between per_90 cut and per305_full were very large(from 1.8 kg to 145kg).

Effects of Number of Incomplete Data in Latest Generation on the Breeding Value Estimated by Random Regression Model (임의회귀 모형 사용시 마지막 세대의 불완전한 기록이 추정육종가에 미치는 효과)

  • ;;;;;;;;Salces, A.J.
    • Journal of Animal Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.143-150
    • /
    • 2006
  • The data were collected in the dairy herd improvement program from January 2000 to July 2005. Test data included 825,157 records of first parity and animals with both parents known were included. This study aimed to describe the effect of incomplete lactation records of latest generation to the change in sire's breeding value using Random Regression model (RRM) in genetic evaluation. Estimation of genetic parameter and breeding value for sire used REMLF90 and BLUPF90 program. The phenotypic value on the number of test day records between group TD11, TD8, TD5, TD2 showed no large differences. For all the group heritability of test day milk yield range from 0.30 to 0.36. However TD2 group showed low heritability the least test day recode on the latest generation. The correlation of above 50% between test day and TD11(0.610), TD8(0.616), TD5(0.661) and TD2(0.682) with different records in latest generation. Sire's rank of breeding value varied widely depending on the records on the number of lactation from start to the latest generation. Study showed that change in breeding value ranked if daughter's test recode more so it should have at least 5 test day records. The use of RRM in dairy cattle genetic evaluation would be desirable if complete lactation records for latest generation daughters of young bulls when selection for proven bulls. Random Regression model (RRM) require at least 5 test-day lactation recode.

Genetic Parameters of Milk Yield and Milk Fat Percentage Test Day Records of Iranian Holstein Cows

  • Shadparvar, A.A.;Yazdanshenas, M.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.9
    • /
    • pp.1231-1236
    • /
    • 2005
  • Genetic parameters for first lactation milk production based on test day (TD) records of 56319 Iranian Holstein cows from 655 herds that first calved between 1991 and 2001 were estimated with restricted maximum likelihood method under an Animal model. Traits analyzed were milk yield and milk fat percentage. Heritability for TD records were highest in second half of the lactation, ranging from 0.11 to 0.19 for milk yield and 0.038 to 0.094 for milk fat percentage respectively. Estimates for lactation records for these traits were 0.24 and 0.26 respectively. Genetic correlations between individual TD records were high for consecutive TD records (>0.9) and decreased as the interval between tests increased. Estimates of genetic correlations of TD yield with corresponding lactation yield were highest (0.78 to 0.86) for mid-lactation (TD3 to TD8). Phenotypic correlations were lower than corresponding genetic correlations, but both followed the same pattern. For milk fat percentage no clear pattern was found. Results of this study suggested that TD yields especially in mid-lactation may be used for genetic evaluation instead of 305-day yield.

Genetic Aspects of Persistency of Milk Yield in Boutsico Dairy Sheep

  • Kominakis, A.P.;Rogdakis, E.;Koutsotolis, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.3
    • /
    • pp.315-320
    • /
    • 2002
  • Test-day records (n=13677) sampled from 896 ewes in 5-9 (${\mu}$=7.5) monthly test-days were used to estimate genetic and phenotypic parameters of test-day yields, lactation milk yield (TMY), length of the milking period (DAYS) and three measures of persistency of milk yield in Boutsico dairy sheep. Τhe measures of persistency were the slope of the regression line (${\beta}$), the coefficient of variation (CV) of the test-day milk yields and the maximum to average daily milk yield ratio (MA). The estimates of variance components were obtained under a linear mixed model by restricted maximum likelihood. The heritability of test-day yields ranged from 0.15 to 0.24. DAYS were found to be heritable ($h^2$=0.11). Heritability estimates of ${\beta}$, CV and MA were 0.15, 0.13, 0.10, respectively. Selection for maximum lactation yields is expected to result in prolonged milking periods, high rates of decline of yields after peak production, variable test-day yields and higher litter sizes. Selection for flatter lactation curves would reduce lactation yields, increase slightly the length of the milking period and decrease yield variation as well as litter size. The most accurate prediction of TMY was obtained with a linear regression model with the first five test-day records.

Genetic Parameters of Milk β-Hydroxybutyric Acid and Acetone and Their Genetic Association with Milk Production Traits of Holstein Cattle

  • Lee, SeokHyun;Cho, KwangHyun;Park, MiNa;Choi, TaeJung;Kim, SiDong;Do, ChangHee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.11
    • /
    • pp.1530-1540
    • /
    • 2016
  • This study was conducted to estimate the genetic parameters of ${\beta}$-hydroxybutyrate (BHBA) and acetone concentration in milk by Fourier transform infrared spectroscopy along with test-day milk production traits including fat %, protein % and milk yield based on monthly samples of milk obtained as part of a routine milk recording program in Korea. Additionally, the feasibility of using such data in the official dairy cattle breeding system for selection of cows with low susceptibility of ketosis was evaluated. A total of 57,190 monthly test-day records for parities 1, 2, and 3 of 7,895 cows with pedigree information were collected from April 2012 to August 2014 from herds enrolled in the Korea Animal Improvement Association. Multi-trait random regression models were separately applied to estimate genetic parameters of test-day records for each parity. The model included fixed herd test-day effects, calving age and season effects, and random regressions for additive genetic and permanent environmental effects. Abundance of variation of acetone may provide a more sensitive indication of ketosis than many zero observations in concentration of milk BHBA. Heritabilities of milk BHBA levels ranged from 0.04 to 0.17 with a mean of 0.09 for the interval between 4 and 305 days in milk during three lactations. The average heritabilities for milk acetone concentration were 0.29, 0.29, and 0.22 for parities 1, 2, and 3, respectively. There was no clear genetic association of the concentration of two ketone bodies with three test-day milk production traits, even if some correlations among breeding values of the test-day records in this study were observed. These results suggest that genetic selection for low susceptibility of ketosis in early lactation is possible. Further, it is desirable for the breeding scheme of dairy cattle to include the records of milk acetone rather than the records of milk BHBA.

Prediction of Future Milk Yield with Random Regression Model Using Test-day Records in Holstein Cows

  • Park, Byoungho;Lee, Deukhwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.915-921
    • /
    • 2006
  • Various random regression models with different order of Legendre polynomials for permanent environmental and genetic effects were constructed to predict future milk yield of Holstein cows in Korea. A total of 257,908 test-day (TD) milk yield records from a total of 28,135 cows belonging to 1,090 herds were considered for estimating (co)variance of the random covariate coefficients using an expectation-maximization REML algorithm in an animal mixed model. The variances did not change much between the models, having different order of Legendre polynomial, but a decreasing trend was observed with increase in the order of Legendre polynomial in the model. The R-squared value of the model increased and the residual variance reduced with the increase in order of Legendre polynomial in the model. Therefore, a model with $5^{th}$ order of Legendre polynomial was considered for predicting future milk yield. For predicting the future milk yield of cows, 132,771 TD records from 28,135 cows were randomly selected from the above data by way of preceding partial TD record, and then future milk yields were estimated using incomplete records from each cow randomly retained. Results suggested that we could predict the next four months milk yield with an error deviation of 4 kg. The correlation of more than 70% between predicted and observed values was estimated for the next four months milk yield. Even using only 3 TD records of some cows, the average milk yield of Korean Holstein cows would be predicted with high accuracy if compared with observed milk yield. Persistency of each cow was estimated which might be useful for selecting the cows with higher persistency. The results of the present study suggested the use of a $5^{th}$ order Legendre polynomial to predict the future milk yield of each cow.

Prediction of 305 Days Milk Production from Early Records in Dairy Cattle Using an Empirical Bayes Method

  • Pereira, J.A.C.;Suzuki, M.;Hagiya, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1511-1515
    • /
    • 2001
  • A prediction of 305 d milk production from early records using an empirical Bayes method (EBM) was performed. The EBM was compared with the best predicted estimation (BPE), test interval method (TIM), and the linearized Wood's model (LWM). Daily milk yields were obtained from 606 first lactation Japanese Holstein cows in three herds. From each file of 305 daily records, 10 random test day records with an interval of approximately one month were taken. The accuracies of these methods were compared using the absolute difference (AD) and the standard deviation (SD) of the differences between the actual and the estimated 305 d milk production. The results showed that in the early stage of the lactation, EBM was superior in obtaining the prediction with high accuracy. When all the herds were analyzed jointly, the AD during the first 5 test day records were on average 373, 590, 917 and 1,042 kg for EBM, BPE, TIM, and LWM, respectively. Corresponding SD for EBM, BPE, TIM, and LWM were on average 488, 733, 747 and 1,605 kg. When the herds were analyzed separately, the EBM predictions retained high accuracy. When more information on the actual lactation was added to the prediction, TIM and LWM gradually achieved better accuracies. Finally, in the last period of the lactation, the accuracy of both of the methods exceeded EBM and BPM. The AD for the last 2 samples analyzing all the herds jointly were on average 141, 142, 164, and 214 kg for LWM, TIM, EBM, and BPE, respectively. In the current practices of collecting monthly records, early prediction of future milk production may be more accurate using EBM. Alternatively, if enough information of the actual lactation is accumulated, TIM may obtain better accuracy in the latter stage of lactation.

Comparison of the fit of automatic milking system and test-day records with the use of lactation curves

  • Sitkowska, B.;Kolenda, M.;Piwczynski, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.408-415
    • /
    • 2020
  • Objective: The aim of the paper was to compare the fit of data derived from daily automatic milking systems (AMS) and monthly test-day records with the use of lactation curves; data was analysed separately for primiparas and multiparas. Methods: The study was carried out on three Polish Holstein-Friesians (PHF) dairy herds. The farms were equipped with an automatic milking system which provided information on milking performance throughout lactation. Once a month cows were also subjected to test-day milkings (method A4). Most studies described in the literature are based on test-day data; therefore, we aimed to compare models based on both test-day and AMS data to determine which mathematical model (Wood or Wilmink) would be the better fit. Results: Results show that lactation curves constructed from data derived from the AMS were better adjusted to the actual milk yield (MY) data regardless of the lactation number and model. Also, we found that the Wilmink model may be a better fit for modelling the lactation curve of PHF cows milked by an AMS as it had the lowest values of Akaike information criterion, Bayesian information criterion, mean square error, the highest coefficient of determination values, and was more accurate in estimating MY than the Wood model. Although both models underestimated peak MY, mean, and total MY, the Wilmink model was closer to the real values. Conclusion: Models of lactation curves may have an economic impact and may be helpful in terms of herd management and decision-making as they assist in forecasting MY at any moment of lactation. Also, data obtained from modelling can help with monitoring milk performance of each cow, diet planning, as well as monitoring the health of the cow.

Random Regression Models Are Suitable to Substitute the Traditional 305-Day Lactation Model in Genetic Evaluations of Holstein Cattle in Brazil

  • Padilha, Alessandro Haiduck;Cobuci, Jaime Araujo;Costa, Claudio Napolis;Neto, Jose Braccini
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.6
    • /
    • pp.759-767
    • /
    • 2016
  • The aim of this study was to compare two random regression models (RRM) fitted by fourth ($RRM_4$) and fifth-order Legendre polynomials ($RRM_5$) with a lactation model (LM) for evaluating Holstein cattle in Brazil. Two datasets with the same animals were prepared for this study. To apply test-day RRM and LMs, 262,426 test day records and 30,228 lactation records covering 305 days were prepared, respectively. The lowest values of Akaike's information criterion, Bayesian information criterion, and estimates of the maximum of the likelihood function (-2LogL) were for $RRM_4$. Heritability for 305-day milk yield (305MY) was 0.23 ($RRM_4$), 0.24 ($RRM_5$), and 0.21 (LM). Heritability, additive genetic and permanent environmental variances of test days on days in milk was from 0.16 to 0.27, from 3.76 to 6.88 and from 11.12 to 20.21, respectively. Additive genetic correlations between test days ranged from 0.20 to 0.99. Permanent environmental correlations between test days were between 0.07 and 0.99. Standard deviations of average estimated breeding values (EBVs) for 305MY from $RRM_4$ and $RRM_5$ were from 11% to 30% higher for bulls and around 28% higher for cows than that in LM. Rank correlations between RRM EBVs and LM EBVs were between 0.86 to 0.96 for bulls and 0.80 to 0.87 for cows. Average percentage of gain in reliability of EBVs for 305-day yield increased from 4% to 17% for bulls and from 23% to 24% for cows when reliability of EBVs from RRM models was compared to those from LM model. Random regression model fitted by fourth order Legendre polynomials is recommended for genetic evaluations of Brazilian Holstein cattle because of the higher reliability in the estimation of breeding values.