• Title/Summary/Keyword: Test uncertainty

Search Result 775, Processing Time 0.031 seconds

Application of Monte Carlo simulations to uncertainty assessment of ship powering prediction by the 1978 ITTC method

  • Seo, Jeonghwa;Park, Jongyeol;Go, Seok Cheon;Rhee, Shin Hyung;Yoo, Jaehoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.292-305
    • /
    • 2021
  • The present study concerns uncertainty assessment of powering prediction from towing tank model tests, suggested by the International Towing Tank Conference (ITTC). The systematic uncertainty of towing tank tests was estimated by allowance of test setup and measurement accuracy of ITTC. The random uncertainty was varied from 0 to 8% of the measurement. Randomly generated inputs of test conditions and measurement data sets under systematic and random uncertainty are used to statistically analyze resistance and propulsive performance parameters at the full scale. The error propagation through an extrapolation procedure is investigated in terms of the sensitivity and coefficient of determination. By the uncertainty assessment, it is found that the uncertainty of resultant powering prediction was smaller than the test uncertainty.

Uncertainty Analysis of Test Method for Heat Recovery Ventilators (폐열회수 환기유닛의 인증시험 방법에 대한 오차분석)

  • Han, H.;Choo, Youn-Bok
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.423-428
    • /
    • 2006
  • Twenty nine HRV models have been tested for last two years since the attestation system has been started by KARSE. It is the objective of the present study to analyze the performance test results. Uncertainty analysis has been conducted to find the effects of measured variables on the uncertainties of test results. The uncertainty of enthalpy is found to be affected by the uncertainty of wet bulb temperature significantly, but not by that of dry bulb temperature for the present range of parameters. The uncertainty of effective enthalpy efficiency is calculated to be 6%P for the cooling condition, and 3%P for the heating condition approximately. In order to reduce the uncertainty of the test results, the uncertainty of wet bulb temperature should be minimized and the indoor/outdoor test conditions should be modified so as to increase the enthalpy difference.

  • PDF

Measurement Uncertainty Assessment of Altitude Performance Test for a Turboshaft Engine (터보샤프트 엔진 고공성능시험의 측정 불확도 평가)

  • Yang, In-Young;Lee, Bo-Hwa
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.59-64
    • /
    • 2010
  • Measurement uncertainty assessment was performed for altitude performance test for a turboshaft engine. Mathematical models of measurement were suggested for major performance parameters such as shaft horse power, fuel flow, specific fuel consumption, and airflow. The procedure was compared with the test of turbojet or turbofan engines. Uncertainty involved with the test condition measurement was assessed. Influence of the test condition measurement uncertainty on the corrected performance data was discussed. Uncertainty assessment result was provided for a example test case using a real altitude test facility. For major performance parameters, measurement uncertainties were assessed as 0.65~1.09% including the test condition measurement uncertainty, 0.36~0.94% not including it.

Verification on the Measurement Uncertainty for Surface Roughness (표면거칠기측정에 대한 측정불확도 추정방법)

  • Kim, Chang-Soon;Park, Min-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.40-45
    • /
    • 2010
  • Evaluation of uncertainty is an ongoing process that can consume time and resources. It can also require the service of someone who is familiar with data analysis techniques. Therefore, it is important for laboratory personnel who are approaching uncertainty analysis for the first time to be aware of the resources required. International inclination of measurement filed to guarantee the traceability and confidence of measurement results discards the error concept and instead analyzes the measurement uncertainty. In this paper, we analyzed the elements of measurement uncertainty on surface roughness test which are the important things in mechanical parts test. Repeat the test by 3 men, the measurement uncertainty could be calculated.

SAMPLING BASED UNCERTAINTY ANALYSIS OF 10 % HOT LEG BREAK LOCA IN LARGE SCALE TEST FACILITY

  • Sengupta, Samiran;Dubey, S.K.;Rao, R.S.;Gupta, S.K.;Raina, V.K
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.690-703
    • /
    • 2010
  • Sampling based uncertainty analysis was carried out to quantify uncertainty in predictions of best estimate code RELAP5/MOD3.2 for a thermal hydraulic test (10% hot leg break LOCA) performed in the Large Scale Test Facility (LSTF) as a part of an IAEA coordinated research project. The nodalisation of the test facility was qualified for both steady state and transient level by systematically applying the procedures led by uncertainty methodology based on accuracy extrapolation (UMAE); uncertainty analysis was carried out using the Latin hypercube sampling (LHS) method to evaluate uncertainty for ten input parameters. Sixteen output parameters were selected for uncertainty evaluation and uncertainty band between $5^{th}$ and $95^{th}$ percentile of the output parameters were evaluated. It was observed that the uncertainty band for the primary pressure during two phase blowdown is larger than that of the remaining period. Similarly, a larger uncertainty band is observed relating to accumulator injection flow during reflood phase. Importance analysis was also carried out and standard rank regression coefficients were computed to quantify the effect of each individual input parameter on output parameters. It was observed that the break discharge coefficient is the most important uncertain parameter relating to the prediction of all the primary side parameters and that the steam generator (SG) relief pressure setting is the most important parameter in predicting the SG secondary pressure.

Uncertainty Analysis and Improvement of an Altitude TestFacility for Small Jet Engines

  • Jun, Yong-Min;Yang, In-Young;Kim, Chun-Taek;Yang, Soo-Seok;Lee, Dae-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.46-56
    • /
    • 2004
  • The verification and improvement of the measurement uncertainty have beenperformed in the altitude test facility for small gas turbine engines, which was built atthe Korea Aerospace Research Institute (KARI) in October 1999. This test is performedwith a single spool turbojet engine at several flight conditions. This paper discussesthe evaluation and validation process for the measurement uncertainty improvements usedin the altitude test facility. The evaluation process, defined as tests before the facilitymodification, shows that the major contnbutors to the measurement uncertainty are theflow meter discharge coefficient, the inlet static and total pressures, the cell pressureand the fuel flow rate. The measurement uncertainty is focused on the primary parametersof the engine performance such as airflow rate, thrust and specific fuel consumption (SFC).The validation process, defined as tests after the facility modification, shows that themeasurement uncertainty, in seal level condition, is tmproved to the acceptable level throughthe facility modification. In altitude test conditions, the measurement uncertainties arenot improved as much as the uncertainty in sea level condition.

A Study on the Uncertainty of Estimation in Vibration Test for the Machine Parts (가공 기계부품 고유진동수 해석과 측정에 관한 연구)

  • Hwang, Jae-Deok;Kim, Chae-Sil;Cho, Sung-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.16-22
    • /
    • 2014
  • Resonance refers to the magnification of a structural response which occurs when a linear lightly damped system is driven with a sinusoidal input at its natural frequency. An exploratory vibration test (a natural frequency measurement test) is very important for the vibration testing of machine parts, as the value measured in an actual laboratory affects test results. For this reason, it is necessary to estimate the measurement uncertainty to verify the reliability of this type of test. In this study, measurement uncertainty is estimated based on three uncertainty factors. The uncertain factors are the measured points in the machine parts, the resolution of the vibration equipment, and uncertainty of the calibration certificate.

Analysis of Solar Simulator's Uncertainty Factor for Photovoltaic Module's I-V curve test (PV모듈의 I-V특성 시험을 위한 Solar Simulator의 측정불확도 요인 분석)

  • Kang, Gi-Hwan;Park, Chi-Hong;Kim, Kyung-Soo;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.5-7
    • /
    • 2006
  • In this paper, we analyzed the elements of measurement uncertainty on electrical performance test which are the most important things in photovoltaic module performance test. Repeating the performance test by 6 men, the measurement uncertainty could be calculated. In this experiment, Solar Simulator (A-Class pulse type) used for domestic certificate test of PV module is Pasan IIIb (Balval, Switzerland). The possible elements of the measurement uncertain that could effect electrical performance test of PV module are reference cell, spectrum correction, error from measurement repetition, test condition, stability and uniformity of artificial solar simulator. To find the measurement uncertainty, 6 men repeated the test by 10 times. And the results were that numerical average value was 124.44W and measurement uncertainty was $124.44W{\pm}0.75W$ with 95% confidence level for 125W PV module.

  • PDF

A methodology for uncertainty quantification and sensitivity analysis for responses subject to Monte Carlo uncertainty with application to fuel plate characteristics in the ATRC

  • Price, Dean;Maile, Andrew;Peterson-Droogh, Joshua;Blight, Derreck
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.790-802
    • /
    • 2022
  • Large-scale reactor simulation often requires the use of Monte Carlo calculation techniques to estimate important reactor parameters. One drawback of these Monte Carlo calculation techniques is they inevitably result in some uncertainty in calculated quantities. The present study includes parametric uncertainty quantification (UQ) and sensitivity analysis (SA) on the Advanced Test Reactor Critical (ATRC) facility housed at Idaho National Laboratory (INL) and addresses some complications due to Monte Carlo uncertainty when performing these analyses. This approach for UQ/SA includes consideration of Monte Carlo code uncertainty in computed sensitivities, consideration of uncertainty from directly measured parameters and a comparison of results obtained from brute-force Monte Carlo UQ versus UQ obtained from a surrogate model. These methodologies are applied to the uncertainty and sensitivity of keff for two sets of uncertain parameters involving fuel plate geometry and fuel plate composition. Results indicate that the less computationally-expensive method for uncertainty quantification involving a linear surrogate model provides accurate estimations for keff uncertainty and the Monte Carlo uncertainty in calculated keff values can have a large effect on computed linear model parameters for parameters with low influence on keff.

Measurement Uncertainty Analysis of Performance Test for Coordinate Measuring Machine (3차원 좌표 측정기 성능 시험법에 대한 측정 불확도 해석)

  • Lee, Seung-Pyo;Kang, Hyung-Joo;Ha, Sung-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.91-99
    • /
    • 2009
  • Because of both precise measurement and efficient quality control, coordinate measuring machines(CMMs) have been widely used in the industry. The purpose of this paper is to present a method to estimate the CMM measurement uncertainty using design of experiments. A factorial design is applied to carry out the performance test proposed by ISO 10360 and to investigate CMM measurement errors associated to orientation and length of the length bar. In order to assess the measurement uncertainty for the performance test, an analysis of the uncertainty components that make up the uncertainty budget has been carried out. The procedure for evaluating the uncertainty of it follows GUM ("Guide to the expression of uncertainty in measurement"). The results show that the proposed method is suitable to investigate CMM performance and determine the contribution of machine variables to measurement uncertainty.