• Title/Summary/Keyword: Test mining

Search Result 521, Processing Time 0.024 seconds

Shear behavior of non-persistent joints in concrete and gypsum specimens using combined experimental and numerical approaches

  • Haeri, Hadi;Sarfarazi, V.;Zhu, Zheming;Hokmabadi, N. Nohekhan;Moshrefifar, MR.;Hedayat, A.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.221-230
    • /
    • 2019
  • In this paper, shear behavior of non-persistent joint surrounded in concrete and gypsum layers has been investigated using experimental test and numerical simulation. Two types of mixture were prepared for this study. The first type consists of water and gypsum that were mixed with a ratio of water/gypsum of 0.6. The second type of mixture, water, sand and cement were mixed with a ratio of 27%, 33% and 40% by weight. Shear behavior of a non-persistent joint embedded in these specimens is studied. Physical models consisting of two edge concrete layers with dimensions of 160 mm by 130 mm by 60 mm and one internal gypsum layer with the dimension of 16 mm by 13 mm by 6 mm were made. Two horizontal edge joints were embedded in concrete beams and one angled joint was created in gypsum layer. Several analyses with joints with angles of $0^{\circ}$, $30^{\circ}$, and $60^{\circ}$ degree were conducted. The central fault places in 3 different positions. Along the edge joints, 1.5 cm vertically far from the edge joint face and 3 cm vertically far from the edge joint face. All samples were tested in compression using a universal loading machine and the shear load was induced because of the specimen geometry. Concurrent with the experiments, the extended finite element method (XFEM) was employed to analyze the fracture processes occurring in a non-persistent joint embedded in concrete and gypsum layers using Abaqus, a finite element software platform. The failure pattern of non-persistent cracks (faults) was found to be affected mostly by the central crack and its configuration and the shear strength was found to be related to the failure pattern. Comparison between experimental and corresponding numerical results showed a great agreement. XFEM was found as a capable tool for investigating the fracturing mechanism of rock specimens with non-persistent joint.

Behaviour of ultra-high strength concrete encased steel columns subject to ISO-834 fire

  • Du, Yong;Zhou, Huikai;Jiang, Jian;Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.121-139
    • /
    • 2021
  • Ultra-high strength concrete (UHSC) encased steel columns are receiving growing interest in high-rise buildings owing to their economic and architectural advantages. However, UHSC encased steel columns are not covered by the modern fire safety design code. A total of 14 fire tests are conducted on UHSC (120 MPa) encased steel columns under constant axial loads and exposed to ISO-834 standard fire. The effect of load ratio, slenderness, stirrup spacing, cross-section size and concrete cover to core steel on the fire resistance and failure mode of the specimens are investigated. The applicability of the tabulated method in EC4 (EN 1994-1-2-2005) and regression formula in Chinese code (DBJ/T 15-81-2011) to fire resistance of UHSC encased steel columns are checked. Generally, the test results reveal that the vertical displacement-heating time curves can be divided into two phases, i.e. thermal expansion and shortening to failure. It is found that the fire resistance of column specimens increases with the increase of the cross-section size and concrete cover to core steel, but decreases with the increase of the load ratio and slenderness. The EC4 method overestimates the fire resistance up to 186% (220 min), while the Chinese code underestimates it down to 49%. The Chinese code has a better agreement than EC4 with the test results since the former considers the effect of the load ratio, slenderness, cross section size directly in its empirical formula. To estimate the fire resistance precisely can improve the economy of structural fire design of ultra-high strength concrete encased steel columns.

A Comparative Study of Predictive Factors for Passing the National Physical Therapy Examination using Logistic Regression Analysis and Decision Tree Analysis

  • Kim, So Hyun;Cho, Sung Hyoun
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.3
    • /
    • pp.285-295
    • /
    • 2022
  • Objective: The purpose of this study is to use logistic regression and decision tree analysis to identify the factors that affect the success or failurein the national physical therapy examination; and to build and compare predictive models. Design: Secondary data analysis study Methods: We analyzed 76,727 subjects from the physical therapy national examination data provided by the Korea Health Personnel Licensing Examination Institute. The target variable was pass or fail, and the input variables were gender, age, graduation status, and examination area. Frequency analysis, chi-square test, binary logistic regression, and decision tree analysis were performed on the data. Results: In the logistic regression analysis, subjects in their 20s (Odds ratio, OR=1, reference), expected to graduate (OR=13.616, p<0.001) and from the examination area of Jeju-do (OR=3.135, p<0.001), had a high probability of passing. In the decision tree, the predictive factors for passing result had the greatest influence in the order of graduation status (x2=12366.843, p<0.001) and examination area (x2=312.446, p<0.001). Logistic regression analysis showed a specificity of 39.6% and sensitivity of 95.5%; while decision tree analysis showed a specificity of 45.8% and sensitivity of 94.7%. In classification accuracy, logistic regression and decision tree analysis showed 87.6% and 88.0% prediction, respectively. Conclusions: Both logistic regression and decision tree analysis were adequate to explain the predictive model. Additionally, whether actual test takers passed the national physical therapy examination could be determined, by applying the constructed prediction model and prediction rate.

Seawater curing effects on the permeability of concrete containing fly ash

  • Hosseini, Seyed Abbas
    • Advances in concrete construction
    • /
    • v.14 no.3
    • /
    • pp.205-214
    • /
    • 2022
  • Due to seawater's physical and chemical deterioration effects on concrete structures, it is crucial to investigate the durability of these structures in marine environments. In some conditions, concrete structures are exposed to seawater from the first days of construction or because of the lack of potable water, part of the concrete curing stage is done with seawater. In this research, the effects of exposure to seawater after 7 days of curing in standard conditions were evaluated. To improve the durability of concrete, fly ash has been used as a substitute for a part of the cement in the mixing design. For this purpose, 5, 15, and 30% of the mixing design cement were replaced with type F fly ash, and the samples were examined after curing in seawater. The resistance of concrete against chloride ion penetration based on the rapid chloride penetration test (RCPT), water permeability based on the depth of water penetration under pressure, and water absorption test was done. The changes in the compressive strength of concrete in different curing conditions were also investigated. The results show that the curing in seawater has slightly reduced concrete resistance to chloride ion permeation. In the long-term, samples containing FA cured in seawater had up to 10% less resistance to chloride ion penetration. The amount of reduction in chloride ion penetration resistance was more for samples without FA. Whiles, for both curing conditions in the long-term up to 15%, FA improved the chloride ion penetration resistance up to 40%. Curing in seawater slightly increased the penetration depth of water under pressure in samples containing FA, while this increase was up to 12% for samples without FA. In the long-term the compressive strength of samples cured in seawater is not much different from the compressive strength of samples cured in plain water, while at the age of 28 days, due to seawater salts' accelerating effects the difference is more noticeable.

Experimental research on the behavior of circular SFRC columns reinforced longitudinally by GFRP rebars

  • Iman Saffarian;Gholam Reza Atefatdoost;Seyed Abbas Hosseini;Leila Shahryari
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.513-525
    • /
    • 2023
  • This research presents the experimental and theoretical evaluations on circular steel-fiber-reinforced-concrete (SFRC) columns reinforced by glass-fiber-reinforced-polymer (GFRP) rebar under the axial compressive loading. Test programs were designed to investigate and compare the effect of different parameters on the structural behavior of columns by performing tests. Theses variables included conventional concrete (CC), fiber concrete (FC), steel/GFRP longitudinal rebars, and transversal rebars configurations. A total of 16 specimens were constructed and categorized into four groups in terms of different rebar-concrete configurations, including GFRP-rebar-reinforced-CC columns (GRCC), GFRP-rebar-reinforced-FC columns (GRFC), steel-rebar-reinforced-CC columns (SRCC) and steel-rebar- reinforced-FC columns (SRFC). Experimental observations displayed that failure modes and cracking patterns of four groups of columns were similar, especially in pre-peak branches of load-deflection curves. Although the average ultimate axial load of columns with longitudinal GFRP rebars was obtained by 17.9% less than the average ultimate axial load of columns with longitudinal steel rebars, the average axial ductility index (DI) of them was gained by 10.2% higher than their counterpart columns. Adding steel fibers (SFs) into concrete led to the increases of 7.7% and 6.7% of the axial peak load and the DI of columns than their counterpart columns with CC. The volumetric ratio had greater efficiency on peak loads and DIs of columns than the type of transversal reinforcement. A simple analytical equation was proposed to predict the axial compressive capacity of columns by considering the axial involvement of longitudinal GFRP rebars, volumetric ratio, and steel spiral/hoop rebar. There was a good correlation between test results and predictions of the proposed equation.

Elastic local buckling behaviour of corroded cold-formed steel columns

  • Nie Biao;Xu Shanhua;Hu WeiCheng;Chen HuaPeng;Li AnBang;Zhang ZongXing
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • Under the long-term effect of corrosive environment, many cold-formed steel (CFS) structures have serious corrosion problems. Corrosion leads to the change of surface morphology and the loss of section thickness, which results in the change of instability mode and failure mechanism of CFS structure. This paper mainly investigates the elastic local buckling behavior of corroded CFS columns. The surface morphology scanning test was carried out for eight CFS columns accelerated corrosion by the outdoor periodic spray test. The thin shell finite element (FE) eigen-buckling analysis was also carried out to reveal the influence of corrosion surface characteristics, corrosion depth, corrosion location and corrosion area on the elastic local buckling behaviour of the plates with four simply supported edges. The accuracy of the proposed formulas for calculating the elastic local buckling stress of the corroded plates and columns was assessed through extensive parameter studies. The results indicated that for the plates considering corrosion surface characteristics, the maximum deformation area of local buckling was located at the plates with the minimum average section area. For the plates with localized corrosion, the main buckling shape of the plates changed from one half-wave to two half-wave with the increase in corrosion area length. The elastic local buckling stress decreased gradually with the increase in corrosion area width and length. In addition, the elastic local buckling stress decreased slowly when corrosion area thickness was relatively large, and then tends to accelerate with the reduction in corrosion area thickness. The distance from the corrosion area to the transverse and longitudinal centerline of the plate had little effect on the elastic local buckling stress. Finally, the calculation formula of the elastic local buckling stress of the corroded plates and CFS columns was proposed.

Reliability-based Design Optimization on Mobility of Deep-seabed Test Miner Using Censored Data of Current Speed (중도절단 해류속도자료를 이용한 심해저 시험집광기의 주행성능에 관한 신뢰성 기반 최적설계)

  • Park, Sanghyun;Cho, Su-Gil;Lim, Woochul;Kim, Saekyeol;Choi, Sung Sik;Lee, Minuk;Choi, Jong-Su;Kim, Hyung-Woo;Lee, Chang-Ho;Hong, Sup;Lee, Tae Hee
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.487-494
    • /
    • 2014
  • Deep-seabed test miner operated by a self-propelled mining system moving on soft soil is an essential device to secure floating and towing performances. The performances of the tracked vehicle are seriously influenced by noise factors such as the shear strength of the seafloor, bottom current, seafloor slope, speed of tracked vehicle, reaction forces of flexible hose, steering ratio, etc. Due to uncertainties related to noise factors, the design of a deep-sea manganese nodules test miner that satisfies target reliabilities is difficult. Therefore, reliability-based design optimization (RBDO) is required to guarantee system reliability under circumstances where uncertainties related to noise factors prevail. Among noise factors, the bottom current, a bimodal distribution, is censored due to the observation limit of measurement devices. Therefore, estimated distribution of the bottom current is inaccurate without considering these characteristics and the result of RBDO cannot be guaranteed. In this paper, we define censored data as unknown values over the limit of observation. If this data is estimated by using Akaike information criterion (AIC) that cannot consider the characteristics of censored data, the distribution of estimated data cannot guarantee accurate reliability. Therefore, censored AIC that can consider the characteristics of data is used to estimate accurate distribution of the bottom current. Finally, RBDO, under circumstances where uncertainties related to noise factors combined censored data are present, is performed on the mobility of a deep-sea manganese nodules test miner.

Relationships between Topological Structures of Traffic Flows on the Subway Networks and Land Use Patterns in the Metropolitan Seoul (수도권 지하철망 상 통행흐름의 위상학적 구조와 토지이용의 관계)

  • Lee, Keum-Sook;Hong, Ji-Yeon;Min, Hee-Hwa;Park, Jong-Soo
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.10 no.4
    • /
    • pp.427-443
    • /
    • 2007
  • The purpose of this study is to investigate spacio-temporal structures of traffic flows on the subway network in the Metropolitan Seoul, and the relationships between topological structures of traffic flows and land use patterns. In particular we analyze in the topological structures of traffic flows on the subway network in time dimension as well as in spatial dimension. For the purpose, this study utilizes data mining techniques to the one day T-card transaction data of the last four years, which has developed for exploring the characteristics of traffic flows from large scale trip-transaction databases. The topological structures of traffic flows on the subway network has changed considerably during the last four years. The volumes of traffic flows, the travel time and stops per trip have increased until 2006 and decreased again in 2007. The results are visualized by utilizing GIS and analyzed, and thus the spatial patterns of traffic flows are analyzed. The spatial distribution patterns of trip origins and destinations show substantial differences among time zones during a day. We analyze the relationships between traffic flows at subway stops and the geographical variables reflecting land use around them. We obtain 6 log-linear functions from stepwise multiple regression analysis. We test multicollinearity among the variables and autocollelation for the residuals.

  • PDF

Construction of Precise Digital Terrain Model for Nonmetal Open-pit Mine by Using Unmanned Aerial Photograph (무인항공 사진촬영을 통한 비금속 노천광산 정밀 수치지형모델 구축)

  • Cho, Seong-Jun;Bang, Eun-Seok;Kang, Il-Mo
    • Economic and Environmental Geology
    • /
    • v.48 no.3
    • /
    • pp.205-212
    • /
    • 2015
  • We have verified applicability of UAV(Unmanned Aerial Vehicle) photogrammetry to a mining engineering. The test mine is a smectite mine located at Gyeongju city in Gyeongnam province, Koera. 448 photos over area of $600m{\times}380m$ were taken with overlapped manner using Cannon Mark VI equipped to multicopter DJI S1000, which were processed with AgiSoft Photoscan software to generate orthophoto and DEM model of the study area. photogrammetry data with 10 cm resolution were generated using 6 ground control positions, which were exported to the 3D geological modeling software to make a topographic surface object. Monitoring of amount of ore production and landsliding could be done with less than 1 hours photographing as well as low cost. A direct link between UAV photogrammetry and 3D geological modeling technology might increase productivity of a mine due to appling the topographical surface change immediately according to the mining operation.

A Study on analysis of severity-adjustment length of stay in hospital for community-acquired pneumonia (지역사회획득 폐렴 환자의 중증도 보정 재원일수 분석)

  • Kim, Yoo-Mi;Choi, Yun-Kyoung;Kang, Sung-Hong;Kim, Won-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1234-1243
    • /
    • 2011
  • Our study was carried out to develop the severity-adjustment model for length of stay in hospital for community-acquired pneumonia so that we analysed the factors on the variation in length of stay(LOS). The subjects were 5,353 community-acquired pneumonia inpatients of the Korean National Hospital Discharge In-depth Injury Survey data from 2004 through 2006. The data were analyzed using t-test and ANOVA and the severity-adjustment model was developed using data mining technique. There are differences according to gender, age, type of insurance, type of admission, but there is no difference of whether patients died in hospital. After yielding the standardized value of the difference between crude and expected length of stay, we analysed the variation of length of stay for community-acquired pneumonia. There was variation of LOS in regional differences and insurance type, though there was no variation according whether patients receive their care in their residences. The variation of length of stay controlling the case mix or severity of illness can be explained the factors of provider. This supply factors in LOS variations should be more studied for individual practice style or patient management practices and healthcare resources or environment. We expect that the severity-adjustment model using administrative databases should be more adapted in other diseases in practical.