• Title/Summary/Keyword: Test furnace

Search Result 759, Processing Time 0.024 seconds

Improvement of Cooling Water Quality by Coagulation and Sedimentation in Steel Mill (응집침전에 의한 제철공장 냉각수질향상)

  • Jo, Kwan-Hyung;Woo, Dal-Sik;Hwang, Byung-Gi;Lee, Seon-Ju;Park, Duck-Weon
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.5
    • /
    • pp.411-416
    • /
    • 2009
  • This study was initiated to improve the cooling water quality by chemical coagulation and sedimentation in steel mills. Due to the inefficient flocculation in the settling tanks of blast furnace cooling water systems, the solid particles in the cooling water overflow accumulate and clog the cooling system. To protect the cooling water system from such fouling, proper flocculants must be continuously used. Laboratory tests were performed for the indirect cooling water system of a plate mill. The batch test in the gas scrubbing cooling water system of a blast furnace showed that the proposed coagulant was more effective for the improvement of coagulation and sedimentation than the existing one. During the tests, cationic flocculants were more effective than use of only an anionic flocculant. The suggested combination of anionic and cationic flocculants can probably improve the turbidity removal efficiency of the cooling water. Proper control of the overflow rate by the designed residence time would help turbidity removal efficiency in the settling tank. In addition, the settling can be enhanced by adopting rapid and slow mixing alternatively. Scale problems in blast furnace cooling water system were reduced to some extent by efficient settling.

A Study on Basic Properties of the Reinforced-roadbed Material Using Water Quenched Blast Furnace Slag (수재슬래그를 이용한 강화노반재료의 기초적 특성 연구)

  • 이선복;윤지선
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.103-110
    • /
    • 2003
  • The development of reinforced-roadbed material in substitute for existing roadbed is necessary to protect its failure from the dynamic stress and vibration caused by the traveling of the high-speed and heavy trains. The water quenched blast furnace slag having potential hydraulic reactivity is one of the materials in substitute for soil reinforced-roadbed. We carried out the study of basic properties of roadbed material using Portland cement and CSA(calcium sulphoaluminate) as the activator for the evaluation of its application. As the result of the strength test, this material satisfied design criterion for reinforced-roadbed. Optimum mixing ratio of this reinforced-roadbed material was 15 ~ 17.5 percent of cement and 2.5 percent of CSA by weight of the blast furnace slag. Especially, as permeability is above $10^{-3}$cm/sec, this material proved to have functions of both reinforced roadbed and drainage layer.

Compressive Strength and Resistance to Freezing and Thawing of Recycled Aggregate Concrete Containing Ground Granulated Blast Furnace Slag (고로슬래그 미분말을 혼입한 순환골재 콘크리트의 압축강도 및 동결융해 저항성)

  • Bae, Suho;Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.469-475
    • /
    • 2013
  • The purpose of this experimental research is to estimate compressive strength and resistance to freezing and thawing of recycled aggregate concrete containing ground granulated blast furnace slag. For this purpose, concrete specimens according to substitution ratio of recycled aggregate were made for different replacement ratio of ground granulated blast furnace slag(GGBFS), and then compressive strength and resistance to freezing and thawing were evaluated for those. It was observed from the test results that compressive strength at 28 days of recycled aggregate concrete containing GGBFS of 20% was much more excellent than plain concrete and when air content of concrete was maintained 4 to 6%, influence of substitution ratio of recycled aggregate and replacement ratio of GGBFS on resistance to freezing and thawing was little up to 300 cycles of freezing and thawing.

A Study on Optimal Thermal Decomposition Furnace to Dispose of the Wastes in Rural Area (농어촌 폐기물 처리용 최적의 열분해로 연구)

  • Kim, Seong Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.79-88
    • /
    • 2005
  • The wastes generated in farming or fishing villages are mostly those of high moisture content or those once used for farming or fishing work, which require a complex process even for disposing of them alone, and moreover they have been recognized to cause a secondary side effects. The study thus is intended to conduct the basic character analysis and incineration test so as to develop the thermal decomposition furnace which will be optimal in disposing of the wastes generated from urban area that mostly have a high thermal energy or require a complex treatment process. And the subject included in the study, in addition, is to design and develop the furnace aimed at reducing the harmful ingredient as well as recycling the heat generated in the course of incineration.

  • PDF

A Experimental Study of Oxidation Kinetics for a Sub-Bituminous Coal Char (아 역청탄 촤 산화 반응속도론에 관한 실험적 연구)

  • Kang, Ki-Tae;Song, Ju-Hun;Lee, Chuen-Sueng;Chang, Young-June;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.18 no.4
    • /
    • pp.239-246
    • /
    • 2009
  • A fundamental investigation has been conducted on the combustion of single particle of a sub-bituminous coal char burning at different temperatures and residence times. The lab-scale test setup consisted of a drop tube furnace where gas temperatures varied from $900^{\circ}C$ to $1400^{\circ}C$. A calibrated two color pyrometer, mounted on the top of the furnace, provided temperature profiles of luminous particle during a char oxidation. An amount of char mass reacted during the reaction is measured with thermogravimetry analyzer by using an ash tracer method. As a result, mass and area reactivity as well as reaction rate coefficients are determined for the char burning at atmospheric pressure condition.

An Experimental Study on the Setting Time and Compressive strength of Mortar using Ferronickel Slag Powder (페로니켈슬래그 미분말을 사용한 모르타르의 응결시간 및 압축강도특성에 관한 실험적 연구)

  • Kim, Young-Uk;Kim, Do-Bin;Choi, Se-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.551-558
    • /
    • 2018
  • This study evaluate the fluidity and hardening properties of mortar by replacement ratio of ferronickel slag powder to estimate the applicability of ferronickel slag powder for cement replacement materials. Ferronickel slag powder was replaced by 0, 5, 10, 15 and 20% of the cement weight. In addition, blast furnace slag powder and fly ash were also used for comparing with the mixtures using ferronickel slag powder. As the test results, the micro-hydration heat of the mixture containing the ferronickel slag powder was lower than that of the mixtures containing the same amount of blast furnace slag powder and fly ash. The flow of the sample with ferronickel slag powder was relatively higher than the other mixtures. In all ages, the compressive strength of the mixture with ferronickel slag powder and fly ash was similar to that of the mix containing only fly ash. In case of drying shrinkage, the mixture containing ferronickel slag powder exhibited lower drying shrinkage than the mixture using blast furnace slag powder, and similar to the mixture containing fly ash.

Mechanical and Electrical Properties of Low-Cement Mortar Using a Large Amount of Industrial By-Products (산업부산물을 다량활용한 저시멘트 모르타르의 역학적·전기적 특성)

  • Kim, Young-Min;Im, Geon-Woo;Lim, Chang-Min;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.43-44
    • /
    • 2023
  • This study evaluated the mechanical and electrical properties of low-cement mortar using a large amount of industrial by-products to reduce carbon emissions from the cement industry. As types of industrial by-products, blast furnace slag and fly ash, which are representative materials, were used, and ultra-high fly ash was mixed and evaluated to solve the problem of initial strength loss. In addition, in order to evaluate the electrical properties, 1% of MWCNT was incorporated relative to the powder mass. As experimental items, the compressive strength was measured on the 1st, 3rd, 7th and 28th days of age, and the rate of change in electrical resistance was measured on the 28th day of age. As a result of the experiment, the initial strength of the test specimen mixed with blast furnace slag and fly ash was significantly lower than that of 100% cement, and the specimen mixed with blast furnace slag showed strength equal to that of cement at 28 days of age. As an electrical characteristic, the electrical resistance was reduced when the load was loaded, and this reason is judged to be the effect of improving the conductivity as the connection between CNTs is narrowed by the compressive load.

  • PDF

Thermal Durability of Thermal Barrier Coatings in Furnace Cyclic Thermal Fatigue Test: Effects of Purity and Monoclinic Phase in Feedstock Powder

  • Park, Hyun-Myung;Jun, Soo-Hyk;Lyu, Guanlin;Jung, Yeon-Gil;Yan, Byung-Il;Park, Kwang-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.608-617
    • /
    • 2018
  • The effects of the purity and monoclinic phase of feedstock powder on the thermal durability of thermal barrier coatings (TBC) were investigated through cyclic thermal exposure. Bond and top coats were deposited by high velocity oxygen fuel method using Ni-Co based feedstock powder and air plasma spray method using three kinds of yttria-stabilized zirconia with different purity and monoclinic phase content, respectively. Furnace cyclic thermal fatigue test was performed to investigate the thermal fatigue behavior and thermal durability of TBCs. TBCs with high purity powder showed better sintering resistance and less thickness in the thermally grown oxide layer. The thermal durability was found to strongly depend on the content of monoclinic phase and the porosity in the top coat; the best thermal fatigue behavior and thermal durability were in the TBC prepared with high purity powder without monoclinic phase.

DSM Application for Deep Excavation in Singapore (싱가포르 지역 깊은 굴착을 위한 지반개량공법 DSM의 적용 사례)

  • Chun, Youn-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2425-2433
    • /
    • 2011
  • DSM (Deep Soil Mixing) is to establish soil-cement column by injecting of cement slurry and blending it in soft ground and have been introduced to Singapore in 1980s and now a days quite popular and considered as alternative method to the jet grouting for temporary earth retaining works and foundations. Herein this paper, the results of lab mixing test based on comparison of characteristics between OPC (Original Portland Cement) and PBFC (Portland Blast Furnace Slag Cement), DSM field trial test and main installation results including monitoring, was presented and it would be referred to similar site later.

An Experimental Study about The Effect of Solid Particle Seeding on Thermal Characteristics of Hydrogen Flame (고체 입자첨가가 수소화염의 열특성에 미치는 영향에 관한 실험적 연구)

  • Kim, Jung-Ju;Baek, Seung-Wook;Kim, Han-Seok;Choi, Joon-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1503-1512
    • /
    • 2002
  • From the view of the environmental protection against the use of fossil fuels, a great of efforts have been exerted to find an alternative energy source. Hydrogen may become an alternative However the product species of the hydrogen flame is only $H_2O$, which emits only non-luminous radiation so the radiation from it is much smaller than that for a hydrocarbon flame. In this study, the authors designed and fabricated a laboratory scale test furnace to study thermal characteristics of hydrogen-air diffusion flame. In addition. the effects of addition of reacting as welt as non-reacting solid particles were experimentally investigated. Among the total heat flux to the wall, about 75 % was occupied by radiation while 25% by convection. When the aluminum oxide (Al$_2$O$_3$) particles were added, the radiative heat flux was reduced due to heat blockage effects. On the other hand, the total as well as the radiative heat flux was increased when the carbon particles were seeded, since the overall temperature increased. The effects of swirl and excess air ratio were also examined.