• Title/Summary/Keyword: Test Specimen Size

Search Result 506, Processing Time 0.026 seconds

Comparison of bond strength between denture base resin and reline resin (의치상 레진과 이장 레진 간의 결합강도 비교)

  • Geum, Young-Hee;Kim, Busob
    • Journal of Technologic Dentistry
    • /
    • v.39 no.3
    • /
    • pp.161-167
    • /
    • 2017
  • Purpose: We compare the bond strength of heat-cured PMMA of Lucitone 199 and QC-20 and Tokuyama Rebase Resin of self-cured resin, which are widely used and well accepted in clinical practice. In order to test the mechanical bonding and chemical bonding, we will compare the bond strength between EstheShot Bright, Smiletone, Repair and Rebase resins. Methods: The denture base resin used in this study was PMMA heat-cured QC-20 and Lucitone 199, polyamide resin EstheShot Bright, Smiletone. And Two types of self-curing Rapid Repair and Tokuyama Rebase were used as resection resins. To measure the bond strength, the denture specimens were fabricated in the size of $10{\times}64{\times}3.5mm$ as instructed by the manufacturer. A surface treatment agent was applied to the cut surfaces of each denture specimen, and the specimens were placed in a preformed silicone mold, and autoclaved excimer resins were prepared. The bending strength of the fabricated specimens was measured using a universal testing machine (STM-5, United Calibration Co., U.S.A.) to measure the three-point bending strength. Results: In both polycarbonate and polyacetal resin, a special resin surface treatment agent showed higher bonding strength than the resin surface treatment agent(p<0.05). Regardless of the type of surface treatment, polycarbonate showed higher bond strength than polyacetal resin(p<0.05). Conclusion: It is considered desirable to use a special surface treating agent for the thermoplastic denture base resin such as polycarbonate and polyacetal resin.

A Study on the Effects of Cross-sectional Dimension Change of Brake Pad Specimen on the Uncertainty of the Compressive Strength (제동 패드의 압축강도시편의 단면치수변화가 압축강도 불확도에 미치는 영향 분석)

  • Park, Soo Hong;Park, Jin Kyu;Kim, Si Wan;Park, Chan Kyoung
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.223-227
    • /
    • 2014
  • The brake pad is one of the basic brake elements of a railway vehicle. It accomplishes braking action by friction between a pad and a brake disc. Because the brake pad must endure specified high pressure, the compressive strength is managed as the main performance factor. The standards for measuring the compressive strength of brake pads are KRS, KRCS, and KRT. These standards specify the size of the test piece for measuring compressive strength as $20mm{\times}10mm{\times}15mm$ ($W{\times}D{\times}H$). To reduce the uncertainty of the compressive strength, factors of uncertainty were analyzed. The results show that changing the dimensions of the cross section was useful to reduce the uncertainty. The uncertainty due to the new cross-sectional dimension shows the effectiveness of reducing uncertainty.

An Experimental Study for the Evaluation of the Structural Behavior Eco Deck Plate (Eco Deck Plate의 구조적 거동 평가를 위한 실험적 연구)

  • Lee, Jin-Eung;Lee, Yong-Jae;Lee, Soo-Kueon;Jung, Byung-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.40-48
    • /
    • 2013
  • Eco deck plate system is a construction method that deconstruction of galvanized steel sheets is possible by integrating steel-wire-integrated girders and the galvanized steel sheets with bolts. Therefore, compared with previous steel-wire-integrated deck plates which were joined by welding, the system is acknowledged as the construction method possible management and repair. This study conducted an experimental research by manufacturing total 24 full size specimens in a same condition for 12-shape specimens by two parts to evaluate structural behaviors of the eco deck plates. In the results after the test, permissible deflection for the construction load action was shown to be values under design values and satisfactory. The processing of lattice steel wires was presented to be structurally advantageous in being manufactured by cutting downward. Also, in case of a specimen that D13 as a steel wire was used, destruction occurred at the welding part of the bottom steel wire and the lattice steel wire, so improvement measures for the welding in factory manufacture are necessary.

INFLUENCES OF SILANE CONCENTRATION FOR FILLER SILANIZATION ON THE PROPERTIES OF COMPOSITES (필러의 실란처리농도가 복합레진의 특성에 미치는 영향)

  • 조태희;박상진
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.1
    • /
    • pp.23-31
    • /
    • 2001
  • The purpose of this study was to search the optimal silane concentrations for filler- silanization of seven experimental composites. Silica filer was a 25micron crushed type. 0.0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, and 3.0% silane($\gamma$-methacrylooxypropyltrimethoxysilane)were added into silica-filler with weight percentage (wt%). Mixtures(silica filler/silane)were reacted at 6$0^{\circ}C$ for 72hours, and crushed into fine particles those were used as fillers for 7 experimental composites. Monomer was a 3 : 1 mixture of Bis-GMA and TEGDMA containing 0.2% tertiary amine and 0.4% camphoroquinone for light curability. A ratio for mixing the monomer and filler was 75% and 25% respectively. Seven experimental composites was classified with the concentration of silane treated, and the specimen number for each test was 10. Specimens with 6mm diameter and 3mm height dimension for measuring the diametral tensile strength were destroyed with 1mm/min cross-head speed on Instron universal testing machine (No. 4467, USA). Shear bond strength was measured on the specimens bonded to bovine enamel etched with 37% phosphoric acid solution for 1 minute Fractured surfaces were observed by SEM (Hitachi S-3200, Japan) among that of the highest values measured from each groups. Following results were obtained: 1. Experimental composites containing silanized filter showed the significantly higher diametral tensile strength and shear bond strength than the composites containing un-silanized fillers(Group1) (p<0.05). 2. In silanized filler composite resins(Group 2~7), Diametral tensile strength of Group 3 showed the significantly higher than that of Group 2 and Group 6(p<0.05). 3. Shear bond strength was higher in Group 3 than that of Group 7 (p<0.05)in silanized fillers composite resins. 4. Fracture surface was formed in resin matrixes on the specimens from composites containing the fillers treated with 0.5% 1.0%, and 1.5% silane. These results mean that the optimal silane concentrations are exist for each fillet with its size and surface area, and that 1.0% is a optimal value for concentration to coat the 25$\mu\textrm{m}$ filler with silane.

  • PDF

Effects of HA and TiN Coating on the Electrochemical Characteristics of Ti-6Al-4 V Alloys for Bone Plates

  • Oh, Jae-Wook;Choe, Han-Cheol;Ko, Yeong-Mu
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.249-252
    • /
    • 2004
  • Effects of HA and TiN coating on the electrochemical characteristics of Ti-6AI-4V alloys for bone plates were investigated using various test methods. Ti-6AI-4V alloys were fabricated by using a vacuum induction furnace and bone plates were made by laser cutting and polishing. HA was made of extracted tooth sintered and then tooth ash was used as HA coating target. The TiN and HA film coating on the surface were carried on using electron-beam physical vapor deposition (EB-PVD) method. The corrosion behaviors of the samples were examined through potentiodynamic method in 0.9% NaCI solutions at $36.5\pm$$1^{\circ}C$ and corrosion surface was observed using SEM and XPS. The surface roughness of TiN coated bone plates was lower than that of tooth ash coated plates. The structure of TiN coated layer showed the columnar structure and tooth ash coated layer showed equiaxed and anisotrophic structure. The corrosion potential of the TiN coated specimen is comparatively high. The active current density of TiN and tooth ash coated alloy showed the range of about $1.0xl0^{-5}$ $A\textrm{cm}^2$, whereas that of the non-coated alloy was$ 1.0xl0^{-4}$ $A\textrm{cm}^2$. The active current densities of HA and TiN coated bone plates were smaller than that of non-coated bone plates in 0.9% NaCl solution. The pitting potential of TiN and HA coated alloy is more drastically increased than that of the non-coated alloy. The pit number and pit size of TiN and HA coated alloy decreased in compared with those of non-coated alloy. For the coated samples, corrosion resistance increased in the order of TiN coated, tooth ash coated, and non-coated alloy.

Improvement of Corrosion Resistance by Mg Films Deposited on Hot Dip Aluminized Steel using a Sputtering Method (용융알루미늄 도금 강판 상에 스퍼터링법으로 형성된 마그네슘 코팅막에 의한 내식성 향상)

  • Park, ae-Hyeok;Kim, Soon-Ho;Jeong, Jae-In;Yang, Ji-Hoon;Lee, Kyung-Hwang;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.224-230
    • /
    • 2018
  • In this study, Mg films were prepared on hot dip aluminized steel (HDA) by using a sputtering method as a high corrosion resistance coating. The corrosion resistance of the Mg films was improved by controlling the morphology and the crystal structure of films by adjusting the Ar gas pressure during the coating process. Anodic polarization measurement results confirm that the corrosion resistance of the Mg films was affected by surface morphology and crystal structure. The corrosion resistance of the Mg coated HDA specimen increased with decreasing crystal size of the Mg coating and it was also improved by forming a film with denser morphology. The crystal structure oriented at Mg(101) plane showed the best corrosion resistance among crystal planes of the Mg metals, which is attributed to its relatively low surface energy. Neutral salt spray test confirmed that corrosion resistance of HDA can be greatly improved by Mg coating, which is superior to that of HDG (hot dip galvanized steel). The reason for the improvement of the corrosion resistance of Mg films on hot dip aluminized steel was due to the barrier effect by the Mg corrosion products formed by the corrosion of the Mg coating layer.

Heat of Hydration and Thermal Crack Control for Floating Concrete Mass Foundation (부상식 매스콘크리트 기초의 수화열 관리 및 온도균열 제어)

  • Rhee, In-Kyu;Kim, Kwang-Don;Kim, Tae-Ook;Lee, Jun-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.156-164
    • /
    • 2010
  • A total of 6 stepwise constructions were made for building the floating mass concrete foundation. The optimal curing strategies and specialized construction guidelines were adoptively extracted from the 1.5m cube mock-up test prior to the main concrete work. Two different thermal crack index(TCI) calculations from current construction manual exhibit relatively low values as comparing the measured temperature data. This implies that the hydration-induced cracking could be developed in parts of concrete mass. However, the controversial phenomenons in reality were observed. No significant surface cracks are detected at the successive construction stages. Thereby, this paper raises the question regarding on the existence of characteristic length with varying size and shape of a target specimen which are missing in the current construction manual. The isothermal core area and high thermal gradient area in the edge volume should be identified and be introduced to TCI calculation for the purpose of an accuracy.

An Experimental Study on Compaction Characteristics of Gravel-mixed Decomposed Granite Soil (자갈이 함유된 화강풍화토의 다짐특성에 관한 연구)

  • Ham, Tae-Gew
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.59-66
    • /
    • 2007
  • In order to clarify the influence of gravel content on the mechanical properties of gravel-mixed decompose granite soils, large-scale one-dimensional compression tests were performed. The sample used in the study was a decomposed granite soil from Shimonoseki in Yamaguchi prefecture in Japan. After adjusting the grain size of the said soils, the specimen compacted with a certain level of compaction energy was put to the test. Based on the results obtained, when gravel-mixed decomposed granite soil was compacted at the same energy level, there existed the specific gravel content at which dry density was maximum and which also produced the minimum compression index. Furthermore, from these results, an expression based on a two-phase mixture theory was proposed to quantitatively evaluate the effects of gravel content and initial dry density and the material parameters calculated through the proposed method proved to exactly estimate the actual measuring value.

Evaluation of Local Damages and Residual Performance of Blast Damaged RC Beams Strengthened with Steel Fiber and FRP Sheet (폭발 손상을 입은 강섬유 및 FRP 시트 보강 철근콘크리트 보의 국부손상 및 잔류성능 평가)

  • Lee, Jin-Young;Jang, Dae-Sung;Kwon, Ki-Yeon;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.627-634
    • /
    • 2014
  • In this study, standoff detonation tests and static beam tests on $160{\times}290{\times}2200mm$ RC beams were conducted to investigate the effect of local damage on the flexural strength and ductility index. And also, blast resistance of RC beams strengthened with steel fiber and FRP sheet were evaluated by these tests. The standoff detonation tests were performed with charge weight of 1kg and standoff distance of 0.1m. After the tests, crater diameters and loss weights of specimens were measured to evaluate the local damage of specimens. Flexural strength and ductility index were measured by conducting the static beam tests on the damaged and undamaged specimens. As a test results, normal concrete specimen(NC) showed relatively large crater and spall diameters that caused weight loss of 23.5kg as a local damage. Whereas, steel fiber reinforced concrete specimen(SFRC) and FRP sheet retrofitted specimens(NC-F, NC-FS) showed higher blast resistance than NC by reducing crater size and weight loss. Flexural strength and ductility index were decreased in case of local damaged specimens by detonation. Especially, large decrease of flexural strength was shown in NC as compared with intact specimen and brittle failure was occurred due to buckling of compressive reinforcement. In case of specimens strengthened with steel fiber and FRP sheet, residual flexural strength and ductility index were increased as compared with NC. In these results, it is concluded that critical local damage can be occurred unless enough standoff distance can be assured even if the charge weight is small. and it is verified that strengthening method using steel fiber and FRP sheet can increase blast resistance.

Monotonic Loading Test for CFT Square Column-to-Beam Partially Restrained Composite Connection (CFT 각형 기둥-보 합성 반강접 접합부의 단조가력 실험)

  • Choi, Sung Mo;Park, Su Hee;Park, Young Wook;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.325-335
    • /
    • 2005
  • This study tackles the development of an improved detail of partially restrained CFT square column-to-beam connection and the evaluation of its mechanical behavior under monotonic loading. The connection is designed to strengthen shearing capacity at the bottom of the connection due to the ultimate behavior of PR-CC by its detail of the bottom connection and simplify the fabrication process. The suggested connection is the welded bottom beam flange connection(M-2) and is compared with the existing PR-CC of bolted seat angle connection(M-1). Two specimens were fabricated in actual size and tested under monotonic loading. Based on the test results, the welded bottom beam flange connection exhibited about 85% of the stiffness of steel beam. It was similar to the bolted seat angle connection and behaved as PR-CC. The specimen of the supposed connection type failed at the shear connection of web but was similar to the bolted seat angle connection until the failure. It obtained sufficient stiffness and capacity through the reinforcingsteel and the capacity and deformational ability equivalent to the full-plastic moment through the anchor inside the steel tube at the web connection. So, it can be said that the suggested connection exhibits sufficient ductile behavior.