• Title/Summary/Keyword: Test Platform

Search Result 1,031, Processing Time 0.026 seconds

A Study on the Application of SE Approach to the Design of Health Monitoring Pilot Platform utilizing Big Data in the Nuclear Power Plant (NPP) (원전 상태 감시 및 조기 경보용 빅데이터 시범 플랫폼의 설계를 위한 시스템 엔지니어링 방법론 적용 연구)

  • Cha, Jae-Min;Shin, Junguk;Son, Choong-Yeon;Hwang, Dong-Sik;Yeom, Choong Sub
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.2
    • /
    • pp.13-29
    • /
    • 2015
  • With the era of big data, the big data has been expected to have a large impact in the NPP safety areas. Although high interests of the big data for the NPP safety, only a limited researches concerning this issue are revealed. Especially, researches on the logical/physical structure and systematic design methods for the big data platform for the NPP safety were not dealt with. In this research, we design a new big data pilot platform for the NPP safety especially focusing on health monitoring and early warning services. For this, we propose a tailored design process based on SE approaches to manage inherent high complexities of the platform design. The proposed design process is consist of several steps from elicitate stakeholders to integration test via define operational concept and scenarios, and system requirements, design a conceptual functional architecture, select alternative physical modules for the derived functions and assess the applicability of the alternative modules, design a conceptual physical architecture, implement and integrate the physical modules. From the design process, this paper covers until the conceptual physical architecture design. In the following paper, the rest of the design process and results of the field test will be shown.

The Design and Development of a Onchain Game for Scalability Verification of Blockchain Platform (블록체인 플랫폼의 성능 및 확장성 검증을 위한 온체인 게임 설계 및 개발)

  • Jang, Kwang-Soo;Lee, Ook
    • Journal of Digital Convergence
    • /
    • v.18 no.10
    • /
    • pp.253-263
    • /
    • 2020
  • Since the birth of the Ethereum in 2015, various decentralized applications (DApp) based on blockchain smart contract technology have appeared. However, CryptoKitty's case showed instability in terms of performance and scalability in real-world service environments. To solve this, a blockchain platform that developed a high transaction per second (TPS) has appeared, but there have been no environments and services to test it. Therefore, this paper intends to design and develop a game that can record the contents of all games on the chain and verify the performance and scalability of the blockchain platform through oversized transactions. The developed game generated a total of 6.3 million blocks and 8.9 million transactions through by 682 and verified the improved performance and scalability of the existing platform. Additionally, the maximum TPS was measured at 1,309 during the test period. In the future, it is expected that performance and scalability can be compared in a realistic environment through the method presented in this paper.

Comparison of Numerical Analyses and Model Test for Evaluation on Hydroelastic and Higher-order Springing Responses of Fixed Cylindrical Structure

  • Kim, Hyun-Sung;Won, Younguk;Oh, Young Jae;Lee, Kangsu;Kim, Byoung Wan
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.191-202
    • /
    • 2021
  • Studies on very large offshore structures are increasing owing to the development of deep sea, large-scale energy generation using ocean resources, and so on. The enlargement of offshore structures makes the hydroelastic effect and low natural frequency related responses important. Numerical analyses and model tests for hydroelastic and higher-order springing responses of fixed cylindrical structures are conducted in this study. The panel methods with and without the hydroelastic effect with shell elements, and the Morison analysis method with beam elements are applied. To observe the hydroelastic effect for structural strength, two structures are considered: bottom-fixed cylindrical structures with high and low bending stiffnesses, respectively. The surge motions at the top of the structure and bending stresses on the structure are observed under regular and irregular wave conditions. The regular wave conditions are generated considering the ratios of the cylindrical outer diameter to the wave lengths, and keeping the wave steepness constant. The model tests are performed in the three-dimensional ocean engineering basin in the KRISO (Korea Research Institute of Ships and Ocean Engineering). From the numerical and experimental results, in which the hydroelastic responses are only observed in the case of the structure with a low bending stiffness, it is confirmed that the hydroelastic responses are highly dependent on the structural stiffness. Additionally, the higher-order phenomenon on the specified wave condition is analyzed by observing the higher-order springing responses when the incident wave frequency or its multiples with the high wave height coincides with the natural frequency of the structure.

Mechanical verification logic and first test results for the Euclid spacecraft

  • Calvi, Adriano;Bastia, Patrizia;Suarez, Manuel Perez;Neumann, Philipp;Carbonell, Albert
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.251-269
    • /
    • 2020
  • Euclid is an optical/near-infrared survey mission of the European Space Agency (ESA) to investigate the nature of dark energy, dark matter and gravity by observing the geometry of the Universe and the formation of structures over cosmological timescales. The Euclid spacecraft mechanical architecture comprises the Payload Module (PLM) and the Service Module (SVM) connected by an interface structure designed to maximize thermal and mechanical decoupling. This paper shortly illustrates the mechanical system of the spacecraft and the mechanical verification philosophy which is based on the Structural and Thermal Model (STM), built at flight standard for structure and thermal qualification and the Proto Flight Model (PFM), used to complete the qualification programme. It will be submitted to a proto-flight test approach and it will be suitable for launch and flight operations. Within the overall verification approach crucial mechanical tests have been successfully performed (2018) on the SVM platform and on the sunshield (SSH) subsystem: the SVM platform static test, the SSH structure modal survey test and the SSH sine vibration qualification test. The paper reports the objectives and the main results of these tests.

A Study of the Development Test and Evaluation and Verification Procedure of a Multi-Mission USV, M-Searcher (복합임무 무인수상정의 개발시험평가 및 검증절차에 관한 고찰)

  • Park, hin-Bae;Kim, Won-Jae;Lee, Kurnchul
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.402-409
    • /
    • 2018
  • This paper describes the plan and procedure of a development test and evaluation that will be performed to verify the performance and technology of multi-mission unmanned surface vehicles (MMUSVs). In order to verify the design requirement of MMUSVs, we designed and manufactured the common platform of MMUSVs, which have an overall length of8.4 m, a displacement of 3,100 kg, and a speed of more than35 kts. The platform is equipped with several sub-systems, including radar and an EOTS/IRS. The EOTS/IRS, along with the search radar, is used for effective detection, identification, and targeting. The core technologies of MMUSV for DT&E will be investigated. The common platform design technologies, remote operating and control system technologies, autonomous navigation technologies, and unmanned operational technology of sensors and equipment will be studied for the development of the MMUSV's core technologies. The system will be able to make precise observations and track targets both manually and automatically during day and night conditions. Currently, the verification tests for each of the technologies and for the integrated system are in the pipeline for DT&E, which will be performed next year. Also, software reliability and life tests will be performed.

Analysis of Relative Wave Elevation Around Semi-submersible Platform Through Model Test: Focusing on Comparison of Wave Probe Characteristics

  • Nam, Hyun-Seung;Park, Dong-Min;Cho, Seok Kyu;Hong, Sa Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Recently, as the offshore structures are operated in the deep-sea oil fields, interest in the analysis of relative wave elevation around platforms is increased. In this study, it is examined how the analysis results differ depending on the characteristics of the wave probe when interpreting the relative wave elevation in the model test. First, by conducting the wave probe comparison experiment in the two-dimensional wave tank, it is confirmed how the measured values differ according to the type of wave probe for the same physical phenomenon. Two types of wave probe are selected, the resistance type and the capacitance type, and the causes of the difference in measured values is studied. After that, the model test of the semi-submersible platform is conducted to investigate the relative wave elevation. Relative wave elevation is measured with the wave probes used in the wave probe comparison experiment and analyzed to estimate the asymmetric factor and the extreme upwell. The results between the two types of wave probes are compared, and qualitative study for the cause of the difference is conducted by photographing the physical phenomenon using a high-speed camera. Through the above study, it is confirmed that the capacitance type wave probe shows a larger measured value than the resistance type under the breaking-wave condition, and the same results are obtained for the asymmetric factor and the extreme upwell. These results is thought to be due to the difference in the measurement principle between wave probes, which is whether or not they measured water bubbles. This implies that the model test should be conducted using appropriate wave probes by considering the physical phenomenon to be analyzed.

The Development of Modularized Post Processing GPS Software Receiving Platform using MATLAB Simulink

  • Kim, Ghang-Ho;So, Hyoung-Min;Jeon, Sang-Hoon;Kee, Chang-Don;Cho, Young-Su;Choi, Wansik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.121-128
    • /
    • 2008
  • Modularized GPS software defined radio (SDR) has many advantages of applying and modifying algorithm. Hardware based GPS receiver uses many hardware parts (such as RF front, correlators, CPU and other peripherals) that process tracked signal and navigation data to calculate user position, while SDR uses software modules, which run on general purpose CPU platform or embedded DSP. SDR does not have to change hardware part and is not limited by hardware capability when new processing algorithm is applied. The weakness of SDR is that software correlation takes lots of processing time. However, in these days the evolution of processing power of MPU and DSP leads the competitiveness of SDR against the hardware GPS receiver. This paper shows a study of modulization of GPS software platform and it presents development of the GNSS software platform using MATLAB Simulink™. We focus on post processing SDR platform which is usually adapted in research area. The main functions of SDR are GPS signal acquisition, signal tracking, decoding navigation data and calculating stand alone user position from stored data that was down converted and sampled intermediate frequency (IF) data. Each module of SDR platform is categorized by function for applicability for applying for other frequency and GPS signal easily. The developed software platform is tested using stored data which is down-converted and sampled IF data file. The test results present that the software platform calculates user position properly.

A Design of Multimedia Application SoC based with Processor using BTB (BTB를 이용한 프로세서 기반 멀티미디어 응용 SoC 설계)

  • Jung, Younjin;Lee, Byungyup;Ryoo, Kwangki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.397-400
    • /
    • 2009
  • This paper describes ASIC design of Multimedia application SoC platform based RISC processor with BTB(Branch Target Buffer). For performance enhancement of platform, we use a simple branch prediction scheme, BTB structure, that stores a target address for branch instruction to remove pipeline harzard. Also, the platform includes a number of peripheral such as VGA controller, AC97 controller, UART controller, SRAM interface and Debug interface. The platform is designed and verified on a Xilinx VERTEX-4 FPGA using a number of test programs for functional tests and timing constraints. Finally, the platform is implemented into a single ASIC chip which can be operated at 100MHz clock frequency using the Chartered 0.18um process. As a result of performance estimation, the proposed platform shows about 5~9% performance improvement in comparison with the previous SoC Platform.

  • PDF

Implementation of Cloud-Based Artificial Intelligence Education Platform (클라우드 기반 인공지능 교육 플랫폼 구현)

  • Wi, Woo-Jin;Moon, Hyung-Jin;Ryu, Gab-Sang
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.6
    • /
    • pp.85-92
    • /
    • 2022
  • Demand for big data analysis and AI developers is increasing, but there is a lack of an education base to supply them. In this paper, by developing a cloud-based artificial intelligence education platform, the goal was to establish an environment in which practical practical training can be efficiently learned at low cost at educational institutions and IT companies. The development of the education platform was carried out by planning scenarios for each user, architecture design, screen design, implementation of development functions, and hardware construction. This training platform consists of a containerized workload, service management platform, lecture and development platform for instructors and students, and secured cloud stability through real-time alarm system and age test, CI/CD development environment, and reliability through docker image distribution. The development of this education platform is expected to expand opportunities to enter new businesses in the education field and contribute to fostering working-level human resources in the AI and big data fields.

Study on Improving Maritime English Proficiency Through the Use of a Maritime English Platform (해사영어 플랫폼을 활용한 표준해사영어 실력 향상에 관한 연구)

  • Jin Ki Seor;Young-soo Park;Dongsu Shin;Dae Won Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.930-938
    • /
    • 2023
  • Maritime English is a specialized language system designed for ship operations, maritime safety, and external and internal communication onboard. According to the International Maritime Organization's (IMO) International Convention on Standards of Training, Certification and Watchkeeping for Seafarers (STCW), it is imperative that navigational officers engaged in international voyages have a thorough understanding of Maritime English including the use of Standard Marine Communication Phrases (SMCP). This study measured students' proficiency in Maritime English using a learning and testing platform that includes voice recognition, translation, and word entry tasks to evaluate the resulting improvement in Maritime English exam scores. Furthermore, the study aimed to investigate the level of platform use needed for cadets to qualify as junior navigators. The experiment began by examining the correlation between students' overall English skills and their proficiency in SMCP through an initial test, followed by the evaluation of improvements in their scores and changes in exam duration during the mid-term and final exams. The initial test revealed a significant dif erence in Maritime English test scores among groups based on individual factors, such as TOEIC scores and self-assessment of English ability, and both the mid-term and final tests confirmed substantial score improvements for the group using the platform. This study confirmed the efficacy of a learning platform that could be extensively applied in maritime education and potentially expanded beyond the scope of Maritime English education in the future.