• Title/Summary/Keyword: Test Loop

Search Result 943, Processing Time 0.025 seconds

Influence of Column Aspect Ratio on the Hysteretic Behavior of Slab-Column Connection (슬래브-기둥 접합부의 이력거동에 대한 기둥 형상비의 영향)

  • Choi, Myung-Shin;Cho, In-Jung;Ahn, Jong-Mun;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.515-525
    • /
    • 2007
  • In this investigation, results of laboratory tests on four reinforced concrete flat plate interior connections with elongated rectangular column support which has been used widely in tall residential buildings are presented. The purpose of this study is to evaluate an effect of column aspect ratio (${\beta}_c={c_1}/{c_2}$=side length ratio of column section in the direction of lateral loading $(c_1)$ to the direction of perpendicular to $c_1$) on the hysteretic behavior under earthquake type loading. The aspect ratio of column section was taken as $0.5{\sim}3\;(c_1/c_2=1/2,\;1/1,\;2/1,\;3/1)$ and the column perimeter was held constant at 1200mm in order to achieve nominal vertical shear strength $(V_c)$ uniformly. Other design parameters such as flexural reinforcement ratio $(\rho)$ of the slab and concrete strength$(f_{ck})$ was kept constant as ${\rho}=1.0%$ and $f_{ck}=40MPa$, respectively. Gravity shear load $(V_g)$ was applied by 30 percent of nominal vertical shear strength $(0.3V_o)$ of the specimen. Experimental observations on punching failure pattern, peak lateral-load and story drift ratio at punching failure, stiffness degradation and energy dissipation in the hysteresis loop, and steel and concrete strain distributions near the column support were examined and discussed in accordance with different column aspect ratio. Eccentric shear stress model of ACI 318-05 was evaluated with experimental results. A fraction of transferring moment by shear and flexure in the design code was analyzed based on the test results.

Understanding of the Duplex Thrust System - Application to the Yeongwol Thrust System, Taebaeksan Zone, Okcheon Belt (듀플렉스트러스트시스템의이해 - 옥천대태백산지역영월트러스트시스템에의 적용)

  • Jang, Yirang
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.395-407
    • /
    • 2019
  • The duplex system has been considered as an important slip-transfer mechanism to evaluate the evolution of orogenic belts. Duplexes are generally found in the hinterland portion of fold-thrust belts and accommodate large amounts of total shortening. Thus, understanding its geometric and kinematic evolution can give information to evaluate the evolution of the entire orogenic belt. Duplexes are recognized as closed-loop thrust traces on map view, indicating higher connectivity than imbricate fans. As originally defined, a duplex is an array of thrust horses which are surrounded by thrust faults including the floor and roof thrusts, and imbricate faults between them. Duplexes can accommodate regional layer-parallel shortening and transfer slip from a floor thrust to a roof thrust. However, an imbricate fault is not the only mean for layer-parallel shortening (LPS) and displacement transfer within duplexes. LPS cleavages and detachment folds can also play the same role. From this aspect, a duplex can be divided into three types; 1) fault duplex, 2) cleavage duplex and 3) fold duplex. Fault duplex can further be subdivided into the Boyer-type duplex, which was firstly designed duplex system in the 1980s that widely applied most of the major fold-thrust belts in the world, and connecting splay duplex, which has different time order in the emplacement of horses from those of the Boyer-type. On the contrary, the cleavage and fold duplexes are newly defined types based on some selected examples. In the Korean Peninsula, the Yeongwol area, the western part of the Taebaeksan Zone of the Okcheon Belt, gives an excellent natural laboratory to study the structural geometry and kinematics of the closed-loops by thrust fault traces in terms of a duplex system. In the previous study, the Yeongwol thrust system was interpreted by alternative duplex models; a Boyer-type hinterland-dipping duplex vs. a combination of major imbricate thrusts and their connecting splays. Although the high angled beds and thrusts as well as different stratigraphic packages within the horses of the Yeongwol duplex system may prefer the later complicate model, currently, we cannot choose one simple answer between the models because of the lack of direct field evidence and time information. Therefore, further researches on the structural field investigations and geochronological analyses in the Yeongwol and adjacent areas should be carried out to test the possibility of applying the fold and cleavage duplex models to the Yeongwol thrust system, and it will eventually provide clues to solve the enigma of formation and its evolution of the Okcheon Belt.

Performance Prediction for an Adaptive Optics System Using Two Analysis Methods: Statistical Analysis and Computational Simulation (통계분석 및 전산모사 기법을 이용한 적응광학 시스템 성능 예측)

  • Han, Seok Gi;Joo, Ji Yong;Lee, Jun Ho;Park, Sang Yeong;Kim, Young Soo;Jung, Yong Suk;Jung, Do Hwan;Huh, Joon;Lee, Kihun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.4
    • /
    • pp.167-176
    • /
    • 2022
  • Adaptive optics (AO) systems compensate for atmospheric disturbance, especially phase distortion, by introducing counter-wavefront deformation calculated from real-time wavefront sensing or prediction. Because AO system implementations are time-consuming and costly, it is highly desirable to estimate the system's performance during the development of the AO system or its parts. Among several techniques, we mostly apply statistical analysis, computational simulation, and optical-bench tests. Statistical analysis estimates performance based on the sum of performance variances due to all design parameters, but ignores any correlation between them. Computational simulation models every part of an adaptive optics system, including atmospheric disturbance and a closed loop between wavefront sensor and deformable mirror, as close as possible to reality, but there are still some differences between simulation models and reality. The optical-bench test implements an almost identical AO system on an optical bench, to confirm the predictions of the previous methods. We are currently developing an AO system for a 1.6-m ground telescope using a deformable mirror that was recently developed in South Korea. This paper reports the results of the statistical analysis and computer simulation for the system's design and confirmation. For the analysis, we apply the Strehl ratio as the performance criterion, and the median seeing conditions at the Bohyun observatory in Korea. The statistical analysis predicts a Strehl ratio of 0.31. The simulation method similarly reports a slightly larger value of 0.32. During the study, the simulation method exhibits run-to-run variation due to the random nature of atmospheric disturbance, which converges when the simulation time is longer than 0.9 seconds, i.e., approximately 240 times the critical time constant of the applied atmospheric disturbance.