• Title/Summary/Keyword: Test Hole

Search Result 865, Processing Time 0.029 seconds

The effect of reinforcing methods on fracture strength of composite inlay bridge (강화재의 사용 방법이 복합 레진 인레이 브릿지의 파괴 강도에 미치는 영향)

  • Byun, Chang-Won;Park, Sang-Hyuk;Sang-Jin, Park;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.2
    • /
    • pp.111-120
    • /
    • 2007
  • The purpose of this study is to evaluate the effects of surface treatment and composition of reinforcement material on fracture strength of fiber reinforced composite inlay bridges. The materials used for this study were I-beam, U-beam TESCERA ATL system and ONE STEP(Bisco, IL, USA). Two kinds of surface treatments were used; the silane and the sandblast. The specimens were divided into 11 groups through the composition of reinforcing materials and the surface treatments. On the dentiform, supposing the missing of Maxillary second pre-molar and indirect composite inlay bridge cavities on adjacent first pre-molar disto-occlusal cavity, first molar mesio-occlusal cavity was prepared with conventional high-speed inlay bur. The reinforcing materials were placed on the proximal box space and build up the composite inlay bridge consequently. After the curing, specimen was set on the testing die with ZPC. Flexural force was applied with universal testing machine (EZ-tester; Shimadzu, Japan). at a cross-head speed of 1 mm/min until initial crack occurred. The data was analyzed using one-way ANOVA/Scheffes post-hoc test at 95% significance level. Groups using I-beam showed the highest fracture strengths (p<0.05) and there were no significant differences between each surface treatment (p>0.05) Most of the specimens in groups that used reinforcing material showed delamination. 1. The use of I-beam represented highest fracture strengths (p<0.05) 2. In groups only using silane as a surface treatment showed highest fracture strength, but there were no significant differences between other surface treatments (p>0.05). 3. The reinforcing materials affect the fracture strength and pattern of composites inlay bridge. 4 The holes at the U-beam did not increase the fracture strength of composites inlay bridge.

Experimental and Numerical Analysis of Microvia Reliability for SLP (Substrate Like PCB) (실험 및 수치해석을 이용한 SLP (Substrate Like PCB) 기술에서의 마이크로 비아 신뢰성 연구)

  • Cho, Youngmin;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.45-54
    • /
    • 2020
  • Recently, market demands of miniaturization, high interconnection density, and fine pitch of PCBs continuously keep increasing. Therefore, SLP (substrate like PCB) technology using a modified semi additive process (MSAP) has attracted great attention. In particular, SLP technology is essential for the development of high-capacity batteries and 5G technology for smartphones. In this study, the reliability of the microvia of hybrid SLP, which is made of conventional HDI (high density interconnect) and MSAP technologies, was investigated by experimental and numerical analysis. Through thermal cycling reliability test using IST (interconnect stress test) and finite element numerical analysis, the effects of various parameters such as prepreg properties, thickness, number of layers, microvia size, and misalignment on microvia reliability were investigated for optimal design of SLP. As thermal expansion coefficient (CTE) of prepreg decreased, the reliability of microvia increased. The thinner the prepreg thickness, the higher the reliability. Increasing the size of the microvia hole and the pad will alleviate stress and improve reliability. On the other hand, as the number of prepreg layers increased, the reliability of microvia decreased. Also, the larger the misalignment, the lower the reliability. In particular, among these parameters, CTE of prepreg material has the greatest impact on the microvia reliability. The results of numerical stress analysis were in good agreement with the experimental results. As the stress of the microvia decreased, the reliability of the microvia increased. These experimental and numerical results will provide a useful guideline for design and fabrication of SLP substrate.

Comparison of Shear Bond Strength of Different Restorative Materials to Tricalcium Silicate-Based Pulp Capping Materials (Tricalcium Silicate-Based 치수복조재에 대한 수 종 수복재의 전단결합강도 비교)

  • Jeong, Hwakyong;Lee, Nanyoung;Lee, Sangho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.2
    • /
    • pp.200-209
    • /
    • 2017
  • The aim of this study was to evaluate the shear bond strength (SBS) of three typical restorative materials - glass ionomer cement (GIC), resin-modified glass ionomer (RMGIC) and composite resin (CR) - to different pulp capping materials, i.e., Theracal $LC^{TM}$ (TLC), $Biodentine^{TM}$ (BD), and $ProRoot^{TM}$ white MTA (WMTA). 90 acrylic blocks with a center hole were prepared. The holes were completely filled with three pulp capping materials (TLC, BD, and WMTA), with 30 specimens per capping material. The samples were then randomly divided into 3 subgroups of 10 specimens each and were overlaid with GIC, RMGIC, or CR. A total 9 specimen groups were prepared. The SBS was assessed using a universal testing machine. Kruskal-Wallis test and Mann-Whitney's test were performed to compare the SBS among the subgroups (p < 0.05). After the SBS test, the fractured surfaces were examined under a stereomicroscope at a magnification of $25{\times}$. The highest and lowest SBS values were recorded for TLC-CR and TLC-GIC, respectively. With regard to the SBS to the three pulp capping materials, CR was found to be superior to RMGIC and GIC. BD showed a higher SBS compared to TLC and WMTA when used with GIC.

Hydraulic Resistance Characteristics of Compacted Weathered Granite Soil by Rotating Cylinder Test and Image Analysis (영상처리기법과 회전식 수리저항성능 실험을 이용한 다짐화강풍화토의 수리저항특성 분석)

  • Kim, Young Sang;Lim, Jae Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.25-34
    • /
    • 2016
  • Recently, in Korea, problems related with unstability of slope or sinkhole in urban area due to erosion of compacted granite soil which was used as a backfill or embankment material have been treated as important issues. Small hole might develop inside of backfill area due to erosion of not only weathered granite soil but also clay, silt, fine sand size particles when underground water flows. Once erosion starts in a soil mass, erosion rate increases gradually to cause rapid destruction. In this study, a rotating cylinder test (RCT) was performed to evaluate the hydraulic resistance characteristics of compacted weathered granite soil under various relative densities and preconsolidation pressures. Meanwhile, an image analysis method was introduced to analyze radius of irregularly eroded sample. It was found that image analysis is an effective means of minimizing the error in calculating a critical shear stress and threshold shear stress on the irregularly eroded sample. Furthermore, in general, hydraulic resistance capacity increases with the increase of relative density and preconsolidation pressure.

The Effect of Robot Therapy on Upper Extremity Function in a Patient With Parkinson's Disease (로봇치료가 파킨슨병 환자의 상지 기능에 미치는 영향)

  • Lee, Inseon;Kim, Jongbae;Park, Ji-Hyuk;Park, Hae Yean
    • Therapeutic Science for Rehabilitation
    • /
    • v.7 no.3
    • /
    • pp.59-78
    • /
    • 2018
  • Objective : The purpose of this study was to investigate the effect of robot-assisted therapy on upper extremity function. Methods : This study used a single-subject experimental A-B-A' design. Three Parkinson's disease patients took part. Each subject received a robot-assisted therapy intervention (45 min/session, 5 sessions/week for 4 weeks). Upper extremity movement was evaluated with the Reo Assessment tool in Reogo. The Jebsen-Taylor hand motor function test, Fugle-Mayer Assessment score, Box and Block Test, and Nine-hole pegboard test were assessed pre- and post-intervention. Results : After intervention, all subjects underwent 3D motion analysis of reaching function. There was overall improvement in resistance, smoothness, direction accuracy, path efficiency, initiation time, and time to moving target with robot-assisted therapy. Robot-assisted therapy may have a positive effect on upper extremity movement in Parkinson's disease. Conclusion : Robot-assisted therapy is considered an alternative in clinical occupational therapy to improve upper extremity function in Parkinson's disease.

Improvement of the Uniformity of Temperature Distribution inside Semiconductor Test Equipment Chamber (반도체 검사 장비의 챔버 내부 온도 분포의 균일성 개선)

  • Lee, Kwang-Ju;Jeong, Kyung-Seok;Park, Sung-Mun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3626-3632
    • /
    • 2010
  • Some design changes were made to enhance the uniformity of temperature distribution inside the chamber of semiconductor test equipment. The design changes include the installation of adjustable airflow controller inside the chamber, the alignment of the centers of heater and match plate, the change in the size and the shape of holes in match plate base, and the addition of new holes of 2 mm diameter in order to allow airflow directly to the temperature sensors. In order to verify their effects, the temperature distributions inside the chambers were measured using 32 RTD sensors before and after the design changes. The temperature distributions were in the ranges of 87.1 to $91.5^{\circ}C$ ($90{\pm}2.9^{\circ}C$) and 89.5 to $90.8^{\circ}C$ ($90{\pm}0.8^{\circ}C$) before and after the design changes, respectively. The above temperature distribution after design changes was maintained for longer than 15 minutes, which satisfied the target temperature range of $90{\pm}1^{\circ}C$ for longer than 10 minutes.

The Development of Height Adjustable Steel Manhole cover (높이조절이 가능한 강재 맨홀뚜껑의 개발)

  • Park, Woo-Cheul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.581-586
    • /
    • 2018
  • Cast iron manhole lids cause environmental pollution during the manufacturing process, and the work environment is very poor. In addition, if the height of the manhole cover does not match the height of the road surface, it causes considerable inconvenience and safety problems. This study proposes a height - adjustable steel manhole cover that can replace cast iron manhole covers and easily match the road surface with the upper surface of the manhole cover. Structural analysis was performed to grasp the design variable of the structure of the manhole cover, satisfying the required quality performance. To fabricate a manhole cover that satisfies the required load capacity, the optimal design for the U-shaped reinforcement structure was made. The cylindrical shape of the height adjustment part and the low frame were formed by bending the steel sheet into a circular shape and then welding. Reinforcing bars were also made by bending a steel plate. The height adjustment groove was machined by a CNC milling machine. Four prototypes were fabricated and a load bearing test was carried out, and new manhole cover was made reflecting results of the test. In the load bearing test, there was no breakage of the welded part, and deformation occurred mainly at the contact area between the groove and gusset plate. Deformation of 1 to 2.7mm occurred due to a load of 450kN. On the other hand, after removing the load, there was almost no residual deformation, and the load bearing evaluation was judged to be satisfactory because the manhole cover could be disassembled and reassembled.

Program Development to Evaluate Permeability Tensor of Fractured Media Using Borehole Televiewer and BIPS Images and an Assessment of Feasibility of the Program on Field Sites (시추공 텔리뷰어 및 BIPS의 영상자료 해석을 통한 파쇄매질의 투수율텐서 계산 프로그램 개발 및 현장 적용성 평가)

  • 구민호;이동우;원경식
    • The Journal of Engineering Geology
    • /
    • v.9 no.3
    • /
    • pp.187-206
    • /
    • 1999
  • A computer program to numerically predict the permeability tensor of fractured rocks is developed using information on discontinuities which Borehole Televiewer and Borehole Image Processing System (BIPS) provide. It uses orientation and thickness of a large number of discontinuities as input data, and calculates relative values of the 9 elements consisting of the permeability tensor by the formulation based on the EPM model, which regards a fractured rock as a homogeneous, anisotropic porous medium. In order to assess feasibility of the program on field sites, the numerically calculated tensor was obtained using BIPS logs and compared to the results of pumping test conducted in the boreholes of the study area. The degree of horizontal anisotropy and the direction of maximum horizontal permeability are 2.8 and $N77^{\circ}CE$, respectively, determined from the pumping test data, while 3.0 and $N63^{\circ}CE$ from the numerical analysis by the developed program. Disagreement between two analyses, especially for the principal direction of anisotropy, seems to be caused by problems in analyzing the pumping test data, in applicability of the EPM model and the cubic law, and in simplified relationship between the crack size and aperture. Aside from these problems, consideration of hydraulic parameters characterizing roughness of cracks and infilling materials seems to be required to improve feasibility of the proposed program. Three-dimensional assessment of its feasibility on field sites can be accomplished by conducting a series of cross-hole packer tests consisting of an injecting well and a monitoring well at close distance.

  • PDF

Atmospheric Turbulence Simulator for Adaptive Optics Evaluation on an Optical Test Bench

  • Lee, Jun Ho;Shin, Sunmy;Park, Gyu Nam;Rhee, Hyug-Gyo;Yang, Ho-Soon
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.107-112
    • /
    • 2017
  • An adaptive optics system can be simulated or analyzed to predict its closed-loop performance. However, this type of prediction based on various assumptions can occasionally produce outcomes which are far from actual experience. Thus, every adaptive optics system is desired to be tested in a closed loop on an optical test bench before its application to a telescope. In the close-loop test bench, we need an atmospheric simulator that simulates atmospheric disturbances, mostly in phase, in terms of spatial and temporal behavior. We report the development of an atmospheric turbulence simulator consisting of two point sources, a commercially available deformable mirror with a $12{\times}12$ actuator array, and two random phase plates. The simulator generates an atmospherically distorted single or binary star with varying stellar magnitudes and angular separations. We conduct a simulation of a binary star by optically combining two point sources mounted on independent precision stages. The light intensity of each source (an LED with a pin hole) is adjustable to the corresponding stellar magnitude, while its angular separation is precisely adjusted by moving the corresponding stage. First, the atmospheric phase disturbance at a single instance, i.e., a phase screen, is generated via a computer simulation based on the thin-layer Kolmogorov atmospheric model and its temporal evolution is predicted based on the frozen flow hypothesis. The deformable mirror is then continuously best-fitted to the time-sequenced phase screens based on the least square method. Similarly, we also implement another simulation by rotating two random phase plates which were manufactured to have atmospheric-disturbance-like residual aberrations. This later method is limited in its ability to simulate atmospheric disturbances, but it is easy and inexpensive to implement. With these two methods, individually or in unison, we can simulate typical atmospheric disturbances observed at the Bohyun Observatory in South Korea, which corresponds to an area from 7 to 15 cm with regard to the Fried parameter at a telescope pupil plane of 500 nm.

Experimental study on applicability of compressed air foam fire water using seawater in train fire at subsea tunnel rescue station (해저터널 구난역 열차화재시 압축공기포 소화용수의 해수 적용성에 관한 실험 연구)

  • Park, Byoung-Jik;Shin, Hyun-Jun;Yoo, Yong-Ho;Park, Jin-Ouk;Kim, Hwi-Seong;Kim, Yang-Kyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.705-715
    • /
    • 2017
  • In this study, applicability of compressed air form (CAF) fire water was verified in a bid to use the undersea effluent as fire water. Foam collector was fabricated in accordance with KS B ISO 7203-1 (Specification for low expansion foam concentrates for top application to water-immiscible liquids) and the test was conducted using fresh water as fire water for 19 times and using seawater as fire water 15 times that totaled 34 times. Foam reduction time was 237.73 seconds on average with fresh water and 215.60 seconds with seawater, which proved the applicability of CAF fire water using seawater. Besides, window breaker was fabricated to directly extinguish the fire in train and a full-scale fire test was conducted three times. At the final 3rd test, window glass was broken in 2 seconds to make the hole for fire extinguishing and suppressed the fire in 3 seconds using CAF fire extinguisher.