• Title/Summary/Keyword: Test Data Compression

Search Result 413, Processing Time 0.03 seconds

Investigation of 1D sand compression response using enhanced compressibility model

  • Chong, Song-Hun
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.341-345
    • /
    • 2021
  • 1D sand compression response to ko-loading experiences volume contraction from low to high effective stress regimes. Previous study suggested compressibility model with physically correct asymptotic void ratios at low and high stress levels and examined only for both remolded clays and natural clays. This study extends the validity of Enhanced Terzaghi model for different sand types complied from 1D compression data. The model involved with four parameters can adequately fit 1D sand compression data for a wide stress range. The low stress obtained from fitting parameters helps to identify the initial fabric conditions. In addition, strong correlation between compressibility and the void ratio at low stress facilitates determination of self-consistent fitting parameters. The computed tangent constrained modulus can capture monotonic stiffening effect induced by an increase in effective stress. The magnitude of tangent stiffness during large strain test should not be associated with small strain stiffness values. The use of a single continuous function to capture 1D stress-strain sand response to ko-loading can improve numerical efficiency and systematically quantify the yield stress instead of ad hoc methods.

Compression of Simulation Results by Sampling (샘플링에 의한 시뮬레이션 결과의 압축)

  • 안태균;최기영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.5
    • /
    • pp.158-169
    • /
    • 1994
  • It is very common in today 's design practice to simulate a big design with a large set of test vectors thereby generating a huge set of data (simulation results) to be analyzed. As the design grows, the simulation results grow and become harder to handled. In this paper, we present algorithms for the compression and regeneration of simulation results. The compression is performed by sampling nets in a circuit. If the user wants to examine the lost part of the data, it is quickly regenerated by applying incremental simulation technique. Experimental results obtained for several practical circuits show that the compression ratio of 10 is easily obtained while maintaining a reasonably fast regeneration of data on a 15.7 MIPS workstation. Using the proposed method we can effectively reduce debug cycle time.

  • PDF

A Study on the Engineering and Environmental Characteristics of Phosphogypsum-Cement-Soil Mixtures (인산석고 시멘트 혼합토의 공학적.환경적 특성 연구)

  • Chang, Dong-Su;Yeon, Kyu-Seok;Kim, Ki-Sung;Ha, Seon-Hyo;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.83-91
    • /
    • 2011
  • This study aimed to investigate the engineering and environmental characteristics of phosphogypsum-cement-soil mixtures composed of phosphogypsum, soil, and a small amount of cement was analysed on the basis of the unconfined compression test, the tensile strength test, the freezing and thawing test, the wetting and drying test, SEM and EDS analysis, XRD analysis and Leaching test. The specimens were manufactured with soil, cement and phosphogypsum. The cement contents was 10 %, and the phosphogypsum contents was 10, 20, 30, and 40 % by the weight of total dry soil. Each specimen was manufactured after curing at constant temperature and humidity room for 3, 7 and 28 days, after which the engineering characteristics of phosphogypsum-cement-soil mixtures were investigated using the unconfined compression test, the tensile strength test, the freezing and thawing test, the wetting and drying test. The basic data were presented for the application of phosphogypsum-cement-soil mixtures as construction materials. To investigate the environmental characteristics, leaching test was performed and the leaching test results were far below than of regulatory requirement of Waste Management Act in Korea. Therefore the results show that phosphogypsum is environmentally safe and can be used as construction materials in environmental aspect.

A new efficient algorithm for test pattern compression considering low power test in SoC (SoC환경에서의 저전력 테스트를 고려한 테스트 패턴 압축에 대한 효율적인 알고리즘)

  • 신용승;강성호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.85-95
    • /
    • 2004
  • As the design complexity increases, it is a major problem that the size of test pattern is large and power consumption is high in scan, especially system-on-a-chip(SoC), with the automatic test equipment(ATE). Because static compaction of test patterns heads to higher power for testing, it is very hard to reduce the test pattern volume for low power testing. This paper proposes an efficient compression/decompression algorithm based on run-length coding for reducing the amount of test data for low power testing that must be stored on a tester and be transferred to SoC. The experimental results show that the new algorithm is very efficient by reducing the memory space for test patterns and the hardware overhead for the decoder.

Compression D/B for Liquid Segregation Control in Semi-Solid Forming Process and Its Application (반용융 성형공정에 있어서 액상편석제어를 위한 압축 D/B 및 응용)

  • 정경득
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.06a
    • /
    • pp.15-32
    • /
    • 1999
  • A relationship between stress and stain is very important to design a die to avoid defects of products during semi-solid forming process. Since the liquid will be of eutectic composition in alloys liquid segregation will result in significant or undesirable situation. The materials used in this experiment are A 357. A390, Al2024 alloys that is fabricated by the electro-magnetic stirring process from Pechiney in France. The compression test was performed by induction heating equipment and MTS. In order to prevent the liquid segregation these measured temperature would be useful to control of strain rate during compression test. The liquid segregation is controlled as change of the strain rate and solid fraction during the compression process, The characteristics of flow between solid and liquid phase considering liquid segregation is examined through the above experiments. In the case of medium and high volume fractions of solid the distribution of strain rate is calculated by using compression test data of semi-solid materials (SSM). The thixoforming experiments with the designed die are carried out successfully. The die filling patterns of SSM for variation of die temperature and pressing force have been investigated. The hardness of the thixoformed scroll products is evaluated in terms of the microstructure for each position.

  • PDF

Study on Compression Tests of Aluminum Foam and Honeycomb Sandwich Composites (알루미늄 폼 및 허니컴 샌드위치 복합재료의 압축실험에 관한 연구)

  • Bang, Seung-Ok;Kim, Key-Sun;Kim, Sei-Hwan;Song, Soo-Gu;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.3802-3807
    • /
    • 2011
  • In this study, in-plane and out-plane compression tests of aluminum foam and honeycomb sandwich composites were carried out. Through these tests, the relationships of load-displacements were analyzed and the compression characteristics were compared with each other. The specimens were compressed with the speed of 1mm/min by using the universal testing machine. Experimental procedures were taken with photograph by the camera and load cell data were stored into computer. Test results showed that buckling was occurred at the aluminum foam core and honeycomb core according to the increase of load. In the in-plane compression test, the maximum load of aluminum foam specimen was similar with that of honeycomb sandwich. The property of honeycomb was better than that of the foam in consideration of specific gravity. In the out-plane compression test, compression maximum load of aluminum honeycomb sandwich composite was higher than that of aluminum foam sandwich composite.

Estimation of tensile strength and moduli of a tension-compression bi-modular rock

  • Wei, Jiong;Zhou, Jingren;Song, Jae-Joon;Chen, Yulong;Kulatilake, Pinnaduwa H.S.W.
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.349-358
    • /
    • 2021
  • The Brazilian test has been widely used to determine the indirect tensile strength of rock, concrete and other brittle materials. The basic assumption for the calculation formula of Brazilian tensile strength is that the elastic moduli of rock are the same both in tension and compression. However, the fact is that the elastic moduli in tension and compression of most rocks are different. Thus, the formula of Brazilian tensile strength under the assumption of isotropy is unreasonable. In the present study, we conducted Brazilian tests on flat disk-shaped rock specimens and attached strain gauges at the center of the disc to measure the strains of rock. A tension-compression bi-modular model is proposed to interpret the data of the Brazilian test. The relations between the principal strains, principal stresses and the ratio of the compressive modulus to tensile modulus at the disc center are established. Thus, the tensile and compressive moduli as well as the correct tensile strength can be estimated simultaneously by the new formulas. It is found that the tensile and compressive moduli obtained using these formulas were in well agreement with the values obtained from the direct tension and compression tests. The formulas deduced from the Brazilian test based on the assumption of isotropy overestimated the tensile strength and tensile modulus and underestimated the compressive modulus. This work provides a new methodology to estimate tensile strength and moduli of rock simultaneously considering tension-compression bi-modularity.

Mechanical behaviour of composite columns composed of RAC-filled square steel tube and profile steel under eccentric compression loads

  • Ma, Hui;Xi, Jiacheng;Zhao, Yaoli;Dong, Jikun
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.103-120
    • /
    • 2021
  • This research examines the eccentric compression performance of composite columns composed of recycled aggregate concrete (RAC)-filled square steel tube and profile steel. A total of 17 specimens on the composite columns with different recycled coarse aggregate (RCA) replacement percentage, RAC strength, width to thickness ratio of square steel tube, profile steel ratio, eccentricity and slenderness ratio were subjected to eccentric compression tests. The failure process and characteristic of specimens under eccentric compression loading were observed in detail. The load-lateral deflection curves, load-train curves and strain distribution on the cross section of the composite columns were also obtained and described on the basis of test data. Results corroborate that the failure characteristics and modes of the specimens with different design parameters were basically similar under eccentric compression loads. The compression side of square steel tube yields first, followed by the compression side of profile steel. Finally, the RAC in the columns was crushed and the apparent local bulging of square steel tube was also observed, which meant that the composite column was damaged and failed. The composite columns under eccentric compression loading suffered from typical bending failure. Moreover, the eccentric bearing capacity and deformation of the specimens decreased as the RCA replacement percentage and width to thickness ratio of square steel tube increased, respectively. Slenderness ratio and eccentricity had a significantly adverse effect on the eccentric compression performance of composite columns. But overall, the composite columns generally had high-bearing capacity and good deformation. Meanwhile, the mechanism of the composite columns under eccentric compression loads was also analysed in detail, and the calculation formulas on the eccentric compression capacity of composite columns were proposed via the limit equilibrium analysis method. The calculation results of the eccentric compression capacity of columns are consistent with the test results, which verify the validity of the formulas, and the conclusions can serve as references for the engineering application of this kind of composite columns.

Analysis on the Relationship of Geotechnical Strength Parameters in the Marine Clay (해성점토의 지반 강도정수 상관성 분석)

  • Heo, Yol;Kwon, Seonwuk;Lee, Cheokeun;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.33-43
    • /
    • 2010
  • The physical characteristics of the marine clay in the Korean Peninsula, specifically Pusan areas of the south coast of Korea, were previously studied and reliable data from harbor construction projects were used for the relationship analysis of geotechnical strength parameters. The sample of marine clay classified to ML, MH, CL, CH and ML-CL from USCS were included for the analysis while the samples classified to SC were excluded in order to raise the degree of data analysis. Geotechnical strength properties, such as undrained shear strength, sensitivity ratio, and effective friction angle were analyzed and evaluated using the data obtained from unconfined compression test, triaxial compression test and field vane test. Abnormal values were extracted through statistical analysis. Moreover, the reliability of the results was improved by performing the evaluation of disturbance. Linear regression analysis was used for the relationship analysis, between undrained shear strength and depth. The relationship equation between undrained shear strength and depth was derived from the analysis of unconfined and triaxial compression test data of samples obtained at same location. Consequently, The relationship between depth and undrained shear strength is $S_u=0.015148D+0.04624$ and the undrained shear strength derived from the triaxial compression test was estimated to be about 1.26 of derived from the unconfined compression test.

Efficient Image Size Selection for MPEG Video-based Point Cloud Compression

  • Jia, Qiong;Lee, M.K.;Dong, Tianyu;Kim, Kyu Tae;Jang, Euee S.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.825-828
    • /
    • 2022
  • In this paper, we propose an efficient image size selection method for video-based point cloud compression. The current MPEG video-based point cloud compression reference encoding process configures a threshold on the size of images while converting point cloud data into images. Because the converted image is compressed and restored by the legacy video codec, the size of the image is one of the main components in influencing the compression efficiency. If the image size can be made smaller than the image size determined by the threshold, compression efficiency can be improved. Here, we studied how to improve the compression efficiency by selecting the best-fit image size generated during video-based point cloud compression. Experimental results show that the proposed method can reduce the encoding time by 6 percent without loss of coding performance compared to the test model 15.0 version of video-based point cloud encoder.

  • PDF