• Title/Summary/Keyword: Test Data Compression

Search Result 417, Processing Time 0.026 seconds

Experimental study on standard and innovative bolted end-plate beam-to-beam joints under bending

  • Katula, Levente;Dunai, Laszlo
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1423-1450
    • /
    • 2015
  • The paper presents the details and results of an experimental study on bolted end-plate joints of industrial type steel building frames. The investigated joints are commonly used in Lindab-Astron industrial buildings and are optimized for manufacturing, erection and durability. The aim of the research was to provide an experimental background for the design model development by studying load-bearing capacity of joints, bolt force distribution, and end-plate deformations. Because of the special joint details, (i.e., joints with four bolts in one bolt-row and HammerHead arrangements), the Eurocode 3 standardized component model had to be improved and extended. The experimental programme included six different end-plate and bolt arrangements and covered sixteen specimens. The steel grade of test specimens was S355, the bolt diameter M20, whereas the bolt grade was 8.8 and 10.9 for the two series. The end-plate thickness varied between 12 mm and 24 mm. The specimens were investigated under pure bending conditions using a four-point-bending test arrangement. In all tests the typical displacements and the bolt force distribution were measured. The end-plate plastic deformations were measured after the tests by an automatic measuring device. The measured data were presented and evaluated by the moment-bolt-row force and moment-distance from centre of compression diagrams and by the deformed end-plate surfaces. From the results the typical failure modes and the joint behaviour were specified and presented. Furthermore the influence of the end-plate thickness and the pretension of the bolts on the behaviour of bolted joints were analysed.

Hardware Design for JBIG2 Huffman Coder (JBIG2 허프만 부호화기의 하드웨어 설계)

  • Park, Kyung-Jun;Ko, Hyung-Hwa
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.200-208
    • /
    • 2009
  • JBIG2, as the next generation standard for binary image compression, must be designed in hardware modules for the JBIG2 FAX to be implemented in an embedded equipment. This paper proposes a hardware module of the high-speed Huffman coder for JBIG2. The Huffman coder of JBIG2 uses selectively 15 Huffman tables. As the Huffman coder is designed to use minimal data and have an efficient memory usage, high speed processing is possible. The designed Huffman coder is ported to Virtex-4 FPGA and co-operating with a software modules on the embedded development board using Microblaze core. The designed IP was successfully verified using the simulation function test and hardware-software co-operating test. Experimental results shows the processing time is 10 times faster than that of software only on embedded system, because of hardware design using an efficient memory usage.

  • PDF

A Study on the Variation of Temperature and the Deformation Characteristics in Asphaltic Concrete Pavement by Air Temperature (대기온도(大氣溫度)에 따른 아스팔트포장(鋪裝) 내부(內部) 온도변화(溫度變化)와 변형특성(變形特性)에 관(關)한 연구(硏究))

  • Kang, Min Soo;Kim, Soo Sam;Lee, Suk Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1115-1128
    • /
    • 1994
  • The condition of temperature gradients in asphaltic concrete (Ascon) pavement have been analyzed based on the data collected from 5 major sites in Korea. From this. considering heat transfer by insolation flux and air temperature within pavement slab. temperature variation on the surface of pavement was computed and numerical model using the theory of thermal conductivity was applied to estimate the temperature gradients in depth. To investigate the present condition of asphalt generally used in Korea. the asphalt property tests were applicated on 5 different AP-3 (AC 85~100), and AP-5 (AC 60~70) asphalts classified by penetration index. Uniaxial compression test and indirect tensile test were also carried out for varying temperature conditions to analyze the effect of temperature on the deformation characteristics of Ascon pavement by calculating the variation of static elastic modulus and layer coefficients.

  • PDF

Feasibility of Artificial Neural Network Model Application for Evaluation of Undrained Shear Strength from Piezocone Measurements (피에조콘을 이용한 점토의 비배수전단강도 추정에의 인공신경망 이론 적용)

  • 김영상
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.287-298
    • /
    • 2003
  • The feasibility of using neural networks to model the complex relationship between piezocone measurements and the undrained shear strength of clays has been investigated. A three layered back propagation neural network model was developed based on actual undrained shear strengths, which were obtained from the isotrpoically and anisotrpoically consolidated triaxial compression test(CIUC and CAUC), and piezocone measurements compiled from various locations around the world. It was validated by comparing model predictions with measured values about new piezocone data, which were not previously employed during development of model. Performance of the neural network model was compared with conventional empirical method, direct correlation method, and theoretical method. It was found that the neural network model is not only capable of inferring a complex relationship between piezocone measurements and the undrained shear strength of clays but also gives a more precise and reliable undrained shear strength than theoretical and empirical approaches. Furthermore, neural network model has a possibility to be a generalized relationship between piezocone measurements and undrained shear strength over the various places and countries, while the present empirical correlations present the site specific relationship.

Prevalence and Risk Factors of Myofascial Pain Syndrome on School Boys (청소년들에서 근막동통증후군의 유병률과 위험요인)

  • Lim, Hyun-Sul;Lee, Jong-Min;Kim, Duck-Soo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.33 no.2
    • /
    • pp.184-192
    • /
    • 2000
  • Objectives : To inquire the prevalence and the risk factors for myofascial pain syndrome (MPS) on young boys in order to use these results as the fundamental data for the prevention of their MPS. Methods : For 7 days in May 1999, this research was taken on 489 male students ranging from 6th to 12th grade. We randomly selected a class for every group and from these classes we operated physical examinations, self-reported questionnaires and from a rehabilitation doctor, MPS test was taken. Thoracic kyphosis and lumbar lordosis were also taken by using the inclinometer. We defined MPS as a regional pain complaint, palpable taut band that is painful on compression. Results : The shoulder MPS prevalence of the subjects were 29.7 persons/100 persons. The statistics revealed that as grades went up, the percentage significantly increased in the MPS prevalence. As of case-control study, 145 students who were tested postive in all aspects were placed as cases, and 176 students who were perfectly normal as controls on risk factors. As a result of comparing the student groups who were stisfied with their chairs to the student groups were not satisfied, the taller showed a significantly higher odds ratio (p<0.01). By the multiple logistic regression test, we concluded that the MPS disease was prevailed far more in the students in the higher grades (Odds ratio: 1.16, 95% C.I.: 1.03-1.31), and also those who were dissatisfied with their chairs than in the ones who were satisfied (Odds ratio: 1.92, 95% C.I.: 1.17-3.17). Conclusions : Significant correlations showed between the MPS diagnosed group and the students who are dissatisfied with their chairs. As a result, more research and observation has to be made concerning this disease, and the desks and chairs should be adjusted to suit the student's physical standards.

  • PDF

The UndrainBd Behavir or of Drilled Shaft Foundations Subjected to Static Inclined Loading (정적 경사하중을 받는 현장타설 말뚝기초의 비배수 거동)

  • ;Kulhawy, Fred H.
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.91-112
    • /
    • 1995
  • Drilled shafts are used increasingly as the foundations for many types of structures. However, very little knowledge of drilled shaft behavior under inclined load is available. In this study, a systematic experimental testing program was conducted to understand the undrained behavior of drilled shaft foundations under inclined loads. A semi-theoretical method of predicting the inclined capacity was developed through a parametric study of the variables such as shaft geometry and load inclination. Test parameters were chosen to be representative of those most frequently used in the electric utility industry. Short, rigid shafts with varying depth/diameter(D/B) ratios were addressed, and loading modes were investigated that includes exial uplift, inclined uplift, and inclined compression loads. Capacities were evaluated using the structural interaction formula and an equation developed from this experimental study. This new equation models the laboratory data well and is applicable for the limites field data.

  • PDF

A new formulation for strength characteristics of steel slag aggregate concrete using an artificial intelligence-based approach

  • Awoyera, Paul O.;Mansouri, Iman;Abraham, Ajith;Viloria, Amelec
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.333-341
    • /
    • 2021
  • Steel slag, an industrial reject from the steel rolling process, has been identified as one of the suitable, environmentally friendly materials for concrete production. Given that the coarse aggregate portion represents about 70% of concrete constituents, other economic approaches have been found in the use of alternative materials such as steel slag in concrete. Unfortunately, a standard framework for its application is still lacking. Therefore, this study proposed functional model equations for the determination of strength properties (compression and splitting tensile) of steel slag aggregate concrete (SSAC), using gene expression programming (GEP). The study, in the experimental phase, utilized steel slag as a partial replacement of crushed rock, in steps 20%, 40%, 60%, 80%, and 100%, respectively. The predictor variables included in the analysis were cement, sand, granite, steel slag, water/cement ratio, and curing regime (age). For the model development, 60-75% of the dataset was used as the training set, while the remaining data was used for testing the model. Empirical results illustrate that steel aggregate could be used up to 100% replacement of conventional aggregate, while also yielding comparable results as the latter. The GEP-based functional relations were tested statistically. The minimum absolute percentage error (MAPE), and root mean square error (RMSE) for compressive strength are 6.9 and 1.4, and 12.52 and 0.91 for the train and test datasets, respectively. With the consistency of both the training and testing datasets, the model has shown a strong capacity to predict the strength properties of SSAC. The results showed that the proposed model equations are reliably suitable for estimating SSAC strength properties. The GEP-based formula is relatively simple and useful for pre-design applications.

The Effects of Leg Blood Flow Restriction Exercise on Muscle Size and Muscle Strength (하지 혈류제한 운동이 근육크기와 근력에 미치는 영향)

  • Kwon, Hae-Yeon;Ahn, So-Youn
    • PNF and Movement
    • /
    • v.10 no.1
    • /
    • pp.61-70
    • /
    • 2012
  • Purpose : The purpose of this study was to investigate thigh muscle-bone CSA and leg strength during low-intensity exercise program with leg blood flow restriction by external compression to reduce muscle outflow. Methods : Eighteen health students gave informed written consent to participate in this investigation. An occlusion cuff was attached to the proximal end of the leg so that blood flow was reduced during the training. The training was conducted one times a day, three times a week, for 8 weeks using one sets of 30 minutes. The training program performed to squat with standing, lunge with standing and heel raise with one leg standing. Measurements of thigh muscle-bone CSA(cross-sectional area) and leg strength were evaluated pre and post-training. Statistical evaluation of these data was accomplished utilizing a paired t-test by SPSS 12.0 program for windows. Significance level was set at p <.05. Results : All data are reported as means and standard deviations(SD) for all variables. The result of the study is followed; After the training, muscle-bone CSA, gluteus maximus m, quadriceps m, hamstring m of both legs were significantly improved but not calf muscle(p<.05). There was no significant difference of change quantity between muscle-bone CSA and leg strength in Lt. and Rt. side. But the variation in leg muscle strength of Rt. leg(dominant) was much more increased than Lt. leg(non-dominant) after 8 weeks training. Conclusion : Low-intensity training with leg blood flow restriction offers a potentially useful method for improving leg muscle strength.

Investigation on Shape Effect of Rock Specimens to Uniaxial Compressive Strength and Modification of Performance Prediction Model of a Roadheader (일축압축강도에 미치는 암석시편의 형상효과 고찰 및 로드헤더 굴진율 예측모델 수정)

  • Kim, Mun-Gyu;Lee, Sang-Min;Cho, Jung-Woo;Choi, Sung-Hyun;Eom, Jun-Won
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.440-459
    • /
    • 2021
  • Roadheaders have begun to be adopted in Korean tunneling sites. The performance prediction models proposed by the manufacturer are used by Korean construction companies. The models use UCS (uniaxial compressive strength) value to predict the net cutting rate, but the rock specimens conducted for the uniaxial compression test have 1.0 of the diameter to length ratio. It has been reported that the specimen shape generally influences the rock strength. The previous references studying the shape effect were cited, and the UCS data of Korean rocks are also updated to analyze the shape effect on UCS. The cause of effect was discussed by previous theory. The change amount of UCS values of Korean rocks was estimated by the data, and the modified prediction model for NCR was finally suggested.

X-band Pulsed Doppler Radar Development for Helicopter (헬기 탑재 X-밴드 펄스 도플러 레이다 시험 개발)

  • Kwag Young-Kil;Choi Min-Su;Bae Jae-Hoon;Jeon In-Pyung;Hwang Kwang-Yun;Yang Joo-Yoel;Kim Do-Heon;Kang Jung-Wan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.773-787
    • /
    • 2006
  • An airborne radar is an essential aviation electronic system for the aircraft to perform various civil and/or military missions in all weather environments. This paper presents the design, development, and test results of the multi-mode X-band pulsed Doppler radar system test model for helicopter-borne flight test. This radar system consists of 4 LRUs(Line-Replacement Unit), which include antenna unit, transmitter and receiver unit, radar signal & data processing unit and display Unit. The developed core technologies include the planar array antenna, TWTA transmitter, coherent I/Q detector, digital pulse compression, MTI, DSP based Doppler FFT filter, adaptive CFAR, moving clutter compensation, platform motion stabilizer, and tracking capability. The design performance of the developed radar system is verified through various ground fixed and moving vehicle test as well as helicopter-borne field tests including MTD(Moving Target Detector) capability for the Doppler compensation due to the moving platform motion.