• Title/Summary/Keyword: Test Cost

Search Result 3,991, Processing Time 0.031 seconds

Prediction of Compaction, Strength Characteristics for Reservoir Soil Using Portable Static Cone Penetration Test (휴대용 정적 콘 관입시험을 통한 저수지 제방 토양의 다짐, 강도 특성 및 사면 안정성 예측)

  • Jeon, Jihun;Son, Younghwan;Kim, Taejin;Jo, Sangbeom;Jung, Seungjoo;Heo, Jun;Bong, Taeho;Kim, Donggeun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.1-11
    • /
    • 2023
  • Due to climate change and aging of reservoirs, damage to embankment slopes is increasing. However, the safety diagnosis of the reservoir slope is mainly conducted by visual observation, and the time and economic cost are formidable to apply soil mechanical tests and slope stability analysis. Accordingly, this study presented a predicting method for the compaction and strength characteristics of the reservoir embankment soil using a portable static cone penetration test. The predicted items consisted of dry density, cohesion, and internal friction angle, which are the main factors of slope stability analysis. Portable static cone penetration tests were performed at 19 reservoir sites, and prediction equations were constructed from the correlation between penetration resistance data and test results of soil samples. The predicted dry density and strength parameters showed a correlation with test results between R2 0.40 and 0.93, and it was found to replace the test results well when used as input data for slope stability analysis (R2 0.8134 or more, RMSE 0.0320 or less). In addition, the prediction equations for the minimum safety factor of the slope were presented using the penetration resistance and gradient. As a result of comparing the predicted safety factor with the analysis results, R2 0.5125, RMSE 0.0382 in coarse-grained soil, R2 0.4182 and RMSE 0.0628 in fine-grained soil. The results of this study can be used as a way to improve the existing slope safety diagnosis method, and are expected to be used to predict the characteristics of various soils and inspect slopes.

Development of the Integrated Exhaust System and Techniques of Nitrogen and Condensate for Fuel Cell Electric Vehicle (연료전지 자동차용 질소/응축수 통합배출시스템 및 기술 개발)

  • Shim, Hyo Sub;Kim, Hyo Sub;Kim, Jae Hoon;Kwon, Bu Kil;Lee, Hyun Joon;Kim, Chi Myung;Park, Yong Sun
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.5
    • /
    • pp.516-524
    • /
    • 2014
  • Proper discharge of nitrogen gas and water condensate is required in a conventional fuel cell system for performance, stability and durability of fuel cell stacks. Present study covers the development of integrated unit and its functioning logic for simultaneous nitrogen gas purge and water condensate drainage in a fuel cell vehicle system. Configuration of condensate drainage pipe, purge valve and level sensor is considered and optimized in physical integration. As a key factor, discharge time is considered and optimized based on the test result of constant-current operation with various operating temperature in logic development. Consequently, derived optimal values are applied and verified in actual vehicle drive mode test. Increase of system design flexibility, weight reduction and cost reduction are anticipated with this study. Additional study for physical and logical improvement is currently being implemented.

A Running Stability Test of 1/5 Scaled Bogie Using Small Scale Derailment Simulator (소형탈선시뮬레이터를 이용한 1/5 축소대차의 주행안정성 시험)

  • Eom, Beom-Gyu;Lee, Se-Yong;Lee, Young-Yeob;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2600-2608
    • /
    • 2011
  • The dynamic stability of railway vehicle has been one of the important issues in railway safety. The dynamic simulator has been used in the study about the dynamic stability of railway vehicle and wheel/rail interface. Especially, a small scale simulator has been widely used in the fundamental study in the laboratory instead of full scale roller rig which is not cost effective and inconvenient to achieve diverse design parameters. But the technique for the design of the small scale simulator for the fundamental study about the dynamic characteristics of the wheel-rail system and the bogie system has not been well developed in Korea. Therefore, the research about the development of the small scale simulator and the bogie has been conducted. As this paper, To predict the dynamic behavior of railway vehicle, we studied running stability test of 1/5 scaled bogie that similarity laws is applied using small scale derailment simulator. For the operation of the small scale derailment simulator, it is required to investigate the performance and characteristics of the system. This could be achieved by a comparative study between an analysis and an experiment. This paper presented the analytical model which could be used for verifying of the test results and understanding of the physical behavior of the dynamic system comprising the small scale bogie and the simulator.

  • PDF

Construction of Indoor Ground Station for Cubesat Communication Test (큐브위성 송수신시험을 위한 실내용 지상국 구축)

  • Han, Sanghyuck;Moon, Sangman;Shin, Dongyeop;Moon, SungTae;Gong, Hyeon Cheol;Choi, Gi-Hyuk
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.73-79
    • /
    • 2014
  • During developing cubesat flight software, Communication test between cubesat and ground station is needed. For this, we have constructed indoor ground station without outdoor antenna for decreasing total cost and time. In this time, if output power of ground station is high, it will affect for cubesat transceiver to be fail. For solving this problem, ground station must be designed for output power of it to be lower than input power of cubesat satellite, and it must be verified. In this paper, first, we describe cubesat indoor ground station using UHF and VHF. Second, we describe output power decreasing test for indoor operation of ground station by attaching attenuators in the end of the output connector.

Development of FPGA-based failure detection equipment for SMART TV embedded camera (FPGA를 이용한 SMART TV용 내장형 카메라 불량 검출 장비 개발)

  • Lee, Jun Seo;Kim, Whan Woo;Kim, Ji-Hoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.45-50
    • /
    • 2013
  • Recently, as the market for SMART TV expands, the camera is embedded for providing various user experience. However, this leads to occurrence of camera failure due to TV power up sequence problem, which are usually not detectable in conventional test equipments. Although the failure-detection can be possible by re-generating control signals for audio interface with new equipment, it is expensive and also requires much time to test. In this paper, for SMART TV, FPGA(Field Programmable Gate Array)-based failure-detection system is proposed which can lead to reduction of both cost and time for test.

A Study on the Change of Physical Properties of Engine Oil after Vehicle Driving (차량 운행에 따른 엔진오일 물성변화 연구)

  • Lim, Young-Kwan;Ham, Song-Yi;Lee, Joung-Min;Jeong, Choong-Sub
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.93-98
    • /
    • 2012
  • The engine oil is an oil used for lubrication of various internal combustion engines. Recently, the vehicle and engine oil manufacture usually guarantee for oil change over 15000~20000 km mileage, but the most of driver usually change engine oil every 5000 km driving in Korea. In this case, it is possible to cause environmental contamination by used engine oil and increase the cost of driving by frequently oil change. In this study, we investigate the various physical properties such as flash point, pour point, kinematic viscosity, cold cranking simulator, total acid number, and four-ball test for fresh engine oil and used engine oil after vehicle driving (5000 km, 10000 km). The test result showed that the total acid number and wear scar by four-ball test of used engine oil had increased than fresh engine oil, but 2 kind of used oil (5000 km and 10000 km) had similar physical properties.

An Experimental Study on the Thermal Performance Measurement of Standing Column Well type Borehole Heat Exchanger (스탠딩컬럼웰형(SCW) 지중열교환기의 열성능 측정에 관한 실험적 연구)

  • Lee, Sanghoon;Choe, Yongseok;An, Kunmuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.122.2-122.2
    • /
    • 2010
  • Knowledge of ground thermal properties is most important for the proper design of BHE(borehole heat exchanger) systems. The configure type, pipe size and thermal performance of the BHE is highly dependent on the ground source heatpump system-efficiency and instruction cost. Thermal response tests with mobile measurement devices were developed primarily for in-situ determination of design data for Standing Column Well apply. The main purpose has been to determine in-situ values of effective ground thermal conductivity and thermal resistance, including the effect of ground-water flow and natural convection in the boreholes. The test rig is set up on a some trailer, and contains a sub-circulation pump, a boiler, temperature sensors, flow meter and a data logger for recording the temperature and circulation fluid flow data. A constant heating power is injected into the SCW through the test rig and the resulting temperature change in the SCW is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective in-situ values of rock thermal conductivity and thermal resistance of SCW.

  • PDF

A Study on the Abnormal and Fault Reproduction Method for Smart Monitoring of Thrust Bearing in Wave Power Generation System (파력발전 시스템 쓰러스트 베어링의 스마트 모니터링을 위한 이상 및 고장 운용 재현 방법에 관한 연구)

  • Oh, Jaewon;Min, Cheonhong;Sung, Kiyoung;Kang, Kwangu;Noh, Hyon-Jeong;Kim, Taewook;Cho, Sugil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.835-842
    • /
    • 2020
  • This paper considers a method of reproducing abnormal and fault operation for smart monitoring of thrust bearing used in wave power generation system. In order to develop smart monitoring technology, abnormal and failure data of actual equipment are required. However, it is impossible to artificially break down the actual equipment in operation due to safety and cost. To tackle this problem, a test bed that can secure data through reproduction of a faulty operating environment should be developed. Therefore, in this study, test bed that can reproduce each situation was developed and the operation result was analysis after identifying the situation to be reproduced through the failure factor analysis of the thrust bearing.

Fatigue behavior of hybrid GFRP-concrete bridge decks under sagging moment

  • Xin, Haohui;Liu, Yuqing;He, Jun;Fan, Haifeng;Zhang, Youyou
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.925-946
    • /
    • 2015
  • This paper presents a new cost-effective hybrid GFRP-Concrete deck system that the GFRP panel serves as both tensile reinforcement and stay-in-place form. In order to understand the fatigue behavior of such hybrid deck, fatigue test on a full-scale specimen under sagging moment was conducted, and a series of static tests were also carried out after certain repeated loading cycles. The fatigue test results indicated that such hybrid deck has a good fatigue performance even after 3.1 million repeated loading cycles. A three-dimensional finite element model of the hybrid deck was established based on experimental work. The results from finite element analyses are in good agreement with those from the tests. In addition, flexural fatigue analysis considering the reduction in flexural stiffness and modulus under cyclic loading was carried out. The predicted flexural strength agreed well with the analytical strength from finite element simulation, and the calculated fatigue failure cycle was consistent with the result based on related S-N curve and finite element analyses. However, the flexural fatigue analytical results tended to be conservative compared to the tested results in safety side. The presented overall investigation may provide reference for the design and construction of such hybrid deck system.

Development of the Two-piece Aluminum Wheels Using the Friction Stir Welding (마찰교반용접법을 이용한 2피스 알루미늄 휠의 개발)

  • Choi, In-Young;Kang, Young-June;Kim, Andrey;Ahn, Kyu-Saeng
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.700-707
    • /
    • 2013
  • Owing to high oil prices and environmental issues, the automobile industry has conducted considerable research and made large investments to manufacture a high-efficiency automobiles. In the case of automobile wheels in which a lightweight material is used to increase the fuel efficiency a mold is used to increase the production efficiency; however, the use of the molding method for this purpose is very expensive. Therefore an automobile wheel consists of two parts. In this study a two-piece automobile wheel is manufactured by the friction stir welding(FSW) of Al6061-T6 to reduce the manufacturing cost and process complexity. The FSW welding tool geometry and rotational speed, and the feed rate are key factors that significantly affect the weld strength. Therefore tensile tests were conducted on specimens produced using various welding conditions, and the optimal FSW welding conditions were applied to manufacture aluminum wheels. To ensure reliability, prototype aluminum wheels were manufactured and their mechanical reliability and safety were evaluated using a durability test, fatigue durability test, and impact test. Through this study, aluminum wheel production was made possible using the FSW method.