• Title/Summary/Keyword: Tesla transformer

Search Result 8, Processing Time 0.026 seconds

Analysis and Performance Improvement of Integrated E1 Pulse Generator for EMP Protection Performance Test (EMP 방호성능 시험용 통합형 E1 펄스 발생장치 분석 및 성능 개선)

  • Kim, Young-Jin;Kang, Ho-jae;Jeong, Young-Kyung;Youn, Dong-Gi;Park, Yong Bae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.415-423
    • /
    • 2018
  • We herein investigate the E1 pulse for evaluating the conducted performance of transmission lines connected to the electromagnetic pulse protection facilities against a conducted high-altitude electromagnetic pulse threat exposed to an external electromagnetic environment. The existing E1 pulse generator uses the Marx generator high-voltage step-up method; however, in this research, we used the Tesla transformer method to easily change the broadband output voltage(30 to 350 kV). We also analyzed the controller, power supply, high-voltage booster, and pulse-shaping device. The E1 pulse performance using the Tesla transformer was predicted through simulations and validated by measurements.

A Study on Optimization of Compact High-voltage Generator Based on Magnetic-core Tesla Transformer

  • Jeong, Young-Kyung;Youn, Dong-Gi;Lee, Moon-Qee
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1349-1354
    • /
    • 2014
  • This paper presents a compact and portable high-voltage generator based on magnetic-core Tesla transformer for driving an UWB high power electromagnetic source. In order to optimize the performance of the high-voltage generator, a novel open-loop cylindrical magnetic-core adopting the quad-division lamination structure is proposed and manufactured. The designed high-voltage generator using the proposed magnetic core has a battery-powered operation and compact size of $280mm{\times}150mm$ in length and diameter, respectively. The high-voltage generator can produce a voltage pulse waveform with peak amplitude of 450 kV, a rise time of 1.5 ns, and pulse duration of 2.5 ns at the 800 V input voltage.

A Study on Design and Implementation of the Tesla Coil using Semiconductor Device (반도체 소자를 이용한 테슬라 코일의 설계 및 제작)

  • Kim, Young-Sun;Kim, Dong-Jin;Lee, Ki-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1571-1576
    • /
    • 2016
  • A Tesla coil is an electrical resonant transformer circuit invented by Nikola Tesla in 1891. It is used to produce high-voltage, low-current, high frequency alternating-current electricity. Tesla coil can generate a long streamer with several million volts of electricity as a high voltage device. It is basically consists of a voltage transformer, high voltage capacitor, spark gap, primary coil, secondary coil and toroid. It is difficult to appear in the output size of the streamer is controlled by the spark gap. The general decision method of the length of streamer is to display the electric output in accordance with the design specifications in initial development plan. Design specifications and the electric output is determined by the application of facilities. In this paper the spark gap is replaced with periodic switching semiconductor device to control output voltage easily in order to apply overvoltage protective circuit due to a secondary coil and a performance test. In these days, their main use is for entertainment and educational displays of the museum, although small coils are still used as leak detectors for high vacuum systems.

400kV-Class Compact High Voltage Pulse Generator Using Magnetic Core Tesla Transformer (자심 테슬라 변압기를 이용한 400kV급 소형 고전압 펄스 발생기 개발)

  • Shin, Jin-Ho;Youn, Dong-Gi
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.385-386
    • /
    • 2014
  • 본 논문에서는 자심 테슬라 변압기를 이용한 400kV급 소형 고전압 펄스 발생기를 개발하였다. 테슬라 변압기의 효율 및 출력전압 향상을 위해 4분할 적층 원통형 자심 구조를 새롭게 제안 하였다. 제안 된 자심 구조를 적용하여 테슬라 변압기를 제작 한 결과, 최대 출력전압 425kV, 에너지 변환 효율 50%를 확인하였다.

  • PDF

CCPS(Capacitor Charging Power Supply) by Optical Signal Control for Repetitive Tesla Transformer (광신호 제어에 의한 고반복 테슬라 변압기용 커패시터 충전형 전원장치)

  • Hwang, Sun-Mook;Lim, Tea-Hyeon;Kim, Cheon-Ho;Choi, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1210-1210
    • /
    • 2015
  • 논문은 광신호 제어에 의해 작동되는 고반복 테슬라 변압기용 커패시터 충전형 전원장치에 관하여 기술하였다. 광신호는 펄스 형태로 약 100us의 시간을 갖고 커패시터 충전형 전원장치를 제어한다. 커패시터 충전형 전원장치는 펜던트, 배터리, 트랜스포머, 인버터/컨트롤러, 트리거 발생기로 구성되었다. 그리고 이 장치의 사양은 800V, 8.8A이고, 실험에 사용된 커패시터 부하는 88uF를 사용하였다. 시험결과, 800V/88uF의 충전시간은 약 8.1ms 이고, 반복률은 100Hz로 운전하였다. 또한 고반복 테슬라 변압기용 커패시터 충전형 전원장치는 안정적인 반복률 및 출력특성를 보이고 있다.

  • PDF

Technical Trends in Hyperscale Artificial Intelligence Processors (초거대 인공지능 프로세서 반도체 기술 개발 동향)

  • W. Jeon;C.G. Lyuh
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.5
    • /
    • pp.1-11
    • /
    • 2023
  • The emergence of generative hyperscale artificial intelligence (AI) has enabled new services, such as image-generating AI and conversational AI based on large language models. Such services likely lead to the influx of numerous users, who cannot be handled using conventional AI models. Furthermore, the exponential increase in training data, computations, and high user demand of AI models has led to intensive hardware resource consumption, highlighting the need to develop domain-specific semiconductors for hyperscale AI. In this technical report, we describe development trends in technologies for hyperscale AI processors pursued by domestic and foreign semiconductor companies, such as NVIDIA, Graphcore, Tesla, Google, Meta, SAPEON, FuriosaAI, and Rebellions.

A Study on the Reliability Analysis in LVDC Distribution System Considering Layout (저압직류 배전계통의 구성 형태를 고려한 공급신뢰도 분석에 관한 연구)

  • Kim, Chung-Mo;No, Chul-Ho;Han, Joon;Oh, Yun-Sik;Kim, Hyun-Soo;Baek, In-Ho;Kim, Chul-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.75-81
    • /
    • 2015
  • At the end of the 19th century, Edison's DC power system and Tesla's AC power system was debated in power market. Finally, AC system became the primary system of the power market because both step-up and step-down of voltage by using transformer and long-distance power transmission are easily possible. However, nowadays the power market takes some action for introducing DC system. Both domestic and foreign researchers are conducting the study on the DC system as well. Some researchers have conducted the studies on power quality and economic evaluation of the DC distribution system but DC distribution system is still controversial in terms of the effectiveness and reliability. In this paper, we calculate the reliability indices of the Low Voltage Direct Current(LVDC) distribution system considering arrangement of power electronics, layout of the distribution system, and distance between load points.

Chopper Application for Magnetic Stimulation

  • Choi, Sun-Seob;Lee, Sun-Min;Kim, Jun-Hyoung;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.213-220
    • /
    • 2010
  • Since the hypothalamus immediately reacts to a nerve by processing all the information from the human body and the external stimulus being conducted, it performs a significant role in internal secretion; thus, a diverse and rapid stimulus pulse is required. By detecting Zero Detector accurately via the application of AVR on-Chip (ATMEL) using commercial electricity, chopping generates a stimulus pulse to the brain using an IGBT gate to designate a new magnetic stimulation following treatment and diagnosis. To simplify and generate a diverse range of stimuli for the brain, chopping can be used as a free magnetic stimulator. Then, commercial frequency (60Hz) is chopped precisely at the first level of the leakage transformer to deliver an appropriate stimulus pulse towards the hypothalamus when necessary. Discharge becomes stable, and the chopping frequency and duty-ratio provide variety after authorizing a high-pressure chopping voltage at the second level of the magnetic stimulator. These methods have several aims. The first is to apply a variable stimulus pulse via accurate switching frequency control by a voltaic pulse or a pulse repetition rate, according to the diagnostic purpose for a given hypothalamus. Consequently, the efficiency tends to increase. This experiment was conducted at a maximum of 210 W, a magnetic induced amplitude of 0.1~2.5 Tesla, a pulse duration of $200{\sim}350\;{\mu}s$, magnetic inducement of 5 Hz, stimulus frequency of 0.1~60 Hz, and a duration of stimulus train of 1~10 sec.