• Title/Summary/Keyword: Tesla Turbine

Search Result 3, Processing Time 0.014 seconds

A Study on Performance comparison of two-size Tesla Turbines Application in Organic Rankine Cycle Machine

  • Thawichsri, Kosart;nilnont, Wanich
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.67-76
    • /
    • 2015
  • This paper aims to study and design of Organic Rankine Cycle (ORC) Machine using Isopentane as working fluid expanding through Tesla turbine. The study on ORC machine expanding through Tesla turbine has result on the efficiency of Tesla turbine. In addition, Thermodynamics theory on isentropic efficiency proved to be a successful method for overcoming the difficulties associated with the determination of very low torque at very high angular speed. By using an inexpensive experiment device and a simple method, the angular acceleration method, for measuring output torque and power in a Tesla turbine is able to predict a tendency of output work. The experiments using two Tesla turbine sizes, the first size is 1.6 bigger than the second one. In comparison with the first size, the tesla turbine can produce power output more than 62% of the second size. Further study on the machine can be developed throughout the county due to its low cost and efficiency.

A comparing on the use of Centrifugal Turbine and Tesla Turbine in an application of Organic Rankine Cycle

  • Thawichsri, Kosart;nilnont, Wanich
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.58-66
    • /
    • 2015
  • This paper aims to compare the use of Centrifugal Turbine and Tesla Turbine in an application of Organic Rankine Cycle (ORC) Machine using Isopentane as working fluid expanding. The working fluid has boiling point below boiling water and works in low-temperature sources between $80-120^{\circ}C$ which can be produced from waste heat, solar-thermal energy and geothermal energy etc. The experiment on ORC machine reveals that the suitability of high pressure pump for working fluid has result on the efficiency of work. In addition, Thermodynamics theory on P-h diagram also presented the effect of heat sources' temperature and flow rate on any work. Thus, the study and design on ORC machine has to concern mainly on pressure pump, flow rate and optimized temperature. Result experiment and calculate ORC Machine using centrifugal Turbine efficiency better than Tesla turbine 30% but Tesla Turbine is cheaper and easily structure. Further study on the machine can be developed throughout the county due to its low cost and efficiency.

Energy harvesting by Tesla Turbine

  • Duong Phan Anh;Ryu Bo Rim;Lee Jin Uk;Kang Ho Keun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.132-133
    • /
    • 2021
  • In recent years, energy harvesting from natural sources and waste heat has been attracting more attention from researchers in response to ever-growing energy demands, high energy prices, and climate-change-mitigation purposes. It is also an important step towards future sustainable energy usages. In thermal dynamic cycles, expanders are playing as the most important equipment for waste heat recovery and energy harvesting as well. As a kind of expander, the bladeless turbine has a promising future and more widely using owning its advantages on relatively long life, good off-design performance, easy operation cleaning and maintenance, a simple structure, no blade corrosion, and low manufacturing costs. There are numerous studies about using the Tesla Turbine as a key technology for energy harvesting in a wide range of applications and conditions. They are presented to help identify technologies that have sufficient potential for applicating to our life and marine industrial engineering. This review paper, initially, presents an overview of current studies both theoretical and experimental of Tesla Turbine usage for waste heat recovery alongside its challenges and investigation on the effect of its configuration, working fluid selection as well. To conclude, future perspectives besides possible ways of transforming waste heat energy to electricity or work, which leads to circular energy, are discussed. The ambition of this paper is to act as a first-hand reference, through the well-defined possible directions, to the young researchers and senior scientists.

  • PDF