• Title/Summary/Keyword: Tertiary volcanism

Search Result 12, Processing Time 0.017 seconds

Tectonic History of the Tertiary Basins of the Southern Korean Peninsula (한반도 남부의 제3기 분지 발달사)

  • Yoon, Sun;Chang, Ki-Hong;You, Hoan-Su;Lee, Young-Gil
    • Economic and Environmental Geology
    • /
    • v.24 no.3
    • /
    • pp.301-308
    • /
    • 1991
  • Four Tertiary basins are distributed on the eastern coast of the southern Korean Peninsula, that is, Bugpyeong, Yeonghae, Pohang and Yangnam basins from north to south. The Yangnam and Pohang basins are the largest ones and have been well studied on their stratigraphies, paleoenvironments and geologic ages, and their tectonic history is representative on the tectogenesis of the Tertiary basins of the southern Korean Peninsula. The geologic events occurred in the Yangnam and Pohang basins from the Early-Middle Eocene through the Middle Miocene suggest that the Yangnam and Pohang basins resulted from the volcanism and rifting caused by the uprising magma, that is, by the diapiric tectogenesis.

  • PDF

Age and Structural Origin of the Tertiary Churyeong Breccia in the Gyeongju City, Korea (경주시 제3기 추령각력암의 퇴적시기와 구조적 성인)

  • Son, Moon;Kim, Seung-Hyun;Kim, Jong-Sun;Song, Cheol-Woo;Kim, In-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.137-151
    • /
    • 2009
  • Synthetic analyses of field data, including rock facies, contact relationships, petrography, structural elements, and etc., and previous geochemical and absolute age data of the Tertiary Churyeong Breccia and its surrounding volcanics in the Gyeongju city, Korea, have led to the following results. (1) The Tertiary rocks are divided into the dacitic tuffs, Churyeong Breccia, and andesitic rocks in ascending order. The dacitic tuffs are unconformably overlain by the Churyeong Breccia which is intruded by or conformably overlain by the andesitic rocks. (2) The dacitic tuffs are correlated with the Paleocene${\sim}$Eocene Wangsan dacitic volcanics, while the Churyeong Breccia and andesitic rocks are correlated with the early Early Miocene Andongri Formation and Yongdongri Tuffs in the Waeup Basin, respectively. (3) The Churyeong Breccia accumulated rapidly in the NE-trending graben about 1.5 km in width during the crustal extension in the NW-SE direction due to the East Sea opening. (4) Dacitic${\sim}$andesitic volcanism and crustal extension were active during the early Early Miocene times in SE Korean peninsula. During the deposition the Churyeong Breccia, especially, the volcanism ceased for some time, but the active normal faulting led to the formation of grabens in places.

K-Ar ages and Geochemistry for Granitic and Volcanic Rocks in the Euiseong and Shinryeong Area, Korea (의성-신령지역의 화강암류 및 화산암류에 대한 K-Ar 연대)

  • Kim, Sang Jung;Lee, Hyun Koo;Itaya, Tetsumaru
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.603-612
    • /
    • 1997
  • Cretaceous sedimentary-volcanoclastic formations of the Kyeongsang Supergroup were intruded by granitic rocks in the late Cretaceous and early Tertiary. In the Euiseong and Shinryeong area, these intrusives have various compositions including gabbro, diorite,biotite granite and feldspar porphyry. Associated volcanic rocks consist of two chemically distinct types: the bimodal suite of basalt and rhyolite in the Keumseongsan caldera, and the felsic suite of andesite and rhyolite in the Sunamsan-Hwasan calderas. Most rocks are subalkaline, and follow a typical differentiation path of the calc-alkaline magma. The granitic rocks can be distinguished chemically from the volcanics by high Zr/Y ratios. Differences in Zr/Y and K/Y ratios between the two volcanic suites can be accounted for by mantle source and fractionation. Chondrite-normalized trace element abundances of granitic rocks are depleted in Th and K, whereas those of the Keumseongsan rhyolites are depleted in Sr and Ti. Rb, La and Ce is enriched in rhyolites of the Sunamsan-Hwasan calderas. $Rb-SiO_2$ and Rb-Y+Nb discrimination diagrams suggest that the intrusives and volcanics have a volcanic arc setting. K-Ar ages indicate four plutonic episodes : diorite (89 Ma), granite (66~62 Ma), granite and porphyry (55~52 Ma) and gabbro (52~45 Ma), and two volcanisms : bimodal basaltic and rhyolitic volcanism (71~66 Ma) in the Keumseongsan caldera, and felsic andesitic and rhyolitic volcanism (61~54 Ma) in the Sunamsan-Hwasan calderas. Geochemical and age data thus suggest that the igneous rocks are related to several geologic episodes during the late Cretaceous to early Tertiary.

  • PDF

[ $^{40}Ar/^{39}Ar$ ] Ages of the Tertiary Dike Swarm and Volcanic Rocks, SE Korea (한반도 남동부 제3기 암맥군과 화신암류의 $^{40}Ar/^{39}Ar$ 연대)

  • Kim Jong-Sun;Son Moon;Kim Jin-Seop;Kim Jeongmin
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.2 s.40
    • /
    • pp.93-107
    • /
    • 2005
  • We determined $^{40}Ar/^{39}Ar$ ages of the Tertiary dike swarms and volcanic rocks distributed in the SE Korea where the most prevalent crustal-deformation and volcanism occurred during the period. In previous study, it was disclosed that the mafic dike swarms on both sides (east and west) of the Yeonil Tectonic Line (YTL) were originated from a same magma although they are consistently aligned with different intrusion directions of NS and NE, respectively. Ages of the mafic dike swarms of this study are $47.3\pm0.8Ma$ and $48.0\pm1.3Ma$, respectively and confirm such conclusion. These facts clarify that the YTL acted as a westernmost limit of the crustal deformation, especially clockwise crust-rotation, during the Miocene. Frequent occurrence of basic dikes indicate strongly that the southeastern part of the Korean Peninsula was under E-W extensional stress field at about 48 Ma, intimately related to the India-Asia collision and subsequent sudden change of the Pacific Plate motion. The ages of the uncommonly appearing intermediate and felsic dikes were determined as $55.9\pm1.5Ma$ and $53.0\pm1.0Ma$, respectively. Ages of the andesitic lava of the Hyodongri Volcanics, the dacitic lava of the Yongdongri Tuff, and dacitic rocks intruding and covering the Churyeong Breccia were determined as $24.0\pm0.5Ma,\;21.6\pm0.4Ma$, $21.8\pm0.1Ma,\;and\;22.0\pm0.5Ma$ respectively. The ages from the volcanics agrees well with the stratigraphy established by the latest field survey, which confirms that the $andesitic\~dacitic$ volcanism was followed by the basaltic volcanism during the Early Miocene.

Hydrothermal Alteration and Mineralization in the Granodioritic Stock of the Barton Peninsula, King George Island, Antarctica (남극 킹죠지섬 바톤반도 화강섬록암의 열수변질과 광화작용)

  • Hwang, Jeong;Lee, Jong Ik
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.171-183
    • /
    • 1998
  • Early Tertiary volcanics, volcanoclastics and granodiorite occur in the Barton Peninsula, King George Island, Antarctica. In the granodioritic stock and volcanic rocks, propylitic alteration characterized by actinolite, epidote, chlorite and calcite is widespread, and disseminations and veinlets of sulfide minerals such as pyrite, chalcopyrite and bornite are ubiquitious. The study on the hydrothermal alteration near granodioritic stock can be summarized as follows; (1) granodiorite intrusion is a small, high level stock associated with calc-alkaline volcanism, and have high copper content, (2) high temperature type of propylitic alteration and common occurrence of copper sulfides in and around granodiorite intrusion, (3) low ${\delta}^{34}S$ values of pyrites by oxidational conditions of sulfide deposition, (4) low ${\delta}^{34}S$ values of quartz and feldspar in the granodiorite, and isotopic non-equilibrium by hydrothermal alteration. It suggest that hyrothermal alteration and mineralization near granodioritc stock should be genetically related to granodiorite intrusion in the Barton Peninsula.

  • PDF

Applicability of plate tectonics to the post-late Cretaceous igneous activities and mineralization in the southern part of South Korea( I ) (한국남부(韓國南部)의 백악기말(白堊紀末) 이후(以後)의 화성활동(火成活動)과 광화작용(鑛化作用)에 대(對)한 판구조론(板構造論)의 적용성(適用性) 연구(硏究)( I ))

  • Min, Kyung Duck;Kim, Ok Joon;Yun, Suckew;Lee, Dai Sung;Joo, Sung Whan
    • Economic and Environmental Geology
    • /
    • v.15 no.3
    • /
    • pp.123-154
    • /
    • 1982
  • Petrochemical, K-Ar dating, Sand Rb/Sr isotopes, metallogenic zoning, paleomagnetic and geotectonic studies of the Gyongsang basin were carried out to examine applicability of plate tectonics to the post-late Cretaceous igneous activity and metallogeny in the southeastern part of Korean Peninsula. The results obtained are as follows: 1. Bulgugsa granitic rocks range from granite to adamellite, whose Q-Ab-Or triangular diagram indicates that the depth and pressure at which the magma consolidated increase from coast to inland varying from 6 km, 0.5-3.3 kb in the coastal area to 17 km, 0.5-10 kb in the inland area. 2. The volcanic rocks in Gyongsang basin range from andesitic to basaltic rocks, and the basaltic rocks are generally tholeiitic in the coastal area and alkali basalt in the inland area. 3. The volcanic rocks of the area have the initial ratio of Sr^{87}/Sr^{86} varying from 0.706 to 0.707 which suggests a continental origin; the ratio of Rb/Sr changing from 0.079-0.157 in the coastal area to 0.021-0.034 in the inland area suggests that the volcanism is getting younger toward coastal side, which may indicate a retreat in stage of differentiation if they were derived from a same magma. The K_2O/SiO_2 (60%) increases from about 1.0 in the coastal area to about 3.0 in the inland area, which may suggest an increase indepth of the Benioff zone, if existed, toward inland side. 4. The K-Ar ages of volcanic rocks were measured to be 79.4 m.y. near Daegu, and 61.7 m.y. near Busan indicating a southeastward decrease in age. The ages of plutonic rocks also decrease toward the same direction with 73 m.y. near Daegu, and 58 m.y. near Busan, so that the volcanism predated the plutonism by 6 m.y. in the continental interior and 4 m.y. along the coast. Such igneous activities provide a positive evidence for an applicability of plate tectonics to this area. 5. Sulfur isotope analyses of sulfide minerals from 8 mines revealed that these deposits were genetically connected with the spacially associated ingeous rocks showing relatively narrow range of ${\delta}^{34}S$ values (-0.9‰ to +7.5‰ except for +13.3 from Mulgum Mine). A sequence of metallogenic zones from the coast to the inland is delineated to be in the order of Fe-Cu zone, Cu-Pb-Zn zone, and W-Mo zone. A few porphyry type copper deposits are found in the Fe-Cu zone. These two facts enable the sequence to be comparable with that of Andean type in South America. 6. The VGP's of Cretaceous and post Cretaceous rocks from Korea are located near the ones($71^{\circ}N$, $180^{\circ}E$ and $90^{\circ}N$, $110^{\circ}E$) obtained from continents of northern hemisphere. This suggests that the Korean peninsula has been stable tectonically since Cretaceous, belonging to the Eurasian continent. 7. Different polar wandering path between Korean peninsula and Japanese islands delineates that there has been some relative movement between them. 8. The variational feature of declination of NRM toward northwestern inland side from southeastern extremity of Korean peninsula suggests that the age of rocks becomes older toward inland side. 9. The geological structure(mainly faults) and trends of lineaments interpreted from the Landsat imagery reveal that NNE-, NWW- and NEE-trends are predominant in the decreasing order of intensity. 10. The NNE-trending structures were originated by tensional and/or compressional forces, the directions of which were parallel and perpendicular respectively to the subduction boundary of the Kula plate during about 90 m.y. B.P. The NWW-trending structures were originated as shear fractures by the same compressional forces. The NEE-trending structures are considered to be priginated as tension fractures parallel to the subduction boundary of the Kula plate during about 70 m.y. B.P. when Japanese islands had drifted toward southeast leaving the Sea of Japan behind. It was clearly demonstrated by many authors that the drifting of Japanese islands was accompanied with a rotational movement of a clock-wise direction, so that it is inferred that subduction boundary had changed from NNE- to NEE-direction. A number of facts and features mentioned above provide a suite of positive evidences enabling application of plate tectonics to the late Cretaceous-early Tertiary igneous activity and metallogeny in the area. Synthesizing these facts, an arc-trench system of continental margin-type is adopted by reconstructing paleogeographic models for the evolution of Korean peninsula and Japan islands. The models involve an extention mechanism behind the are(proto-Japan), by which proto-Japan as of northeastern continuation of Gyongsang zone has been drifted rotationally toward southeast. The zone of igneous activity has also been migrated from the inland in late-Cretaceous to the peninsula margin and southwestern Japan in Tertiary.

  • PDF

Miocene Volcanic Rocks Over the Area of Chenonja-bong and Siru-bong, Jinhae (1): Petrography and Petrochemical Characteristics (진해 천자봉-시루봉 일원에 분포하는 마이오세 화산암 (1): 암석기재와 암석화학적 특징)

  • Ryoo, Sam-Hyung;Jeong, Yun-Gi;Lee, Sang-Won;Sung, Jong-Gyu;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.108-131
    • /
    • 2008
  • The Miocene andesite and basalt intruded into and/or extruded on the Cretaceous volcanic and granitic rocks over the area of Chenjabong and Sirubong in the vicinity of Jinhae, southern part of Kyongsang basin. The K-Ar ages of the younger volcanic rocks are from 16 Ma (Sirubong andesite) to 10 Ma (Cheonjabong basalt), which indicate the Miocene volcanism in the outer part of the Tertiary basin in the Korean peninsula. The volcanics are divided into Chenjabong andesite, Cheonjabong basaltic andesite, Sirubong andesite and Cheonjabong basalt. The Cheonjabong andesite is composed of phenocrysts of clinopyroxene and plagioclase ($An_{60{\sim}64}$) and groundmass with lath-like plagioclase ($An_{76{\sim}84}$) and glass. The Cheonjabong basaltic andesite is composed of plagioclase phenocryst ($An_{60{\sim}64}$) with plagioclase lath ($An_{65}$) and glass in groundmass. The Sirubong andesite is only consisted of plagiocalse lath ($An_{64{\sim}68}$) and glass with absence of phonocryst. The Cheonjabong basalt shows typical porphyritic texture with phenocrysts of olivine ($Fo_{69-84}$) and clinopyroxene. The groundmass of the Cheonjabong basalt is composed of microphenocrysts of olivine, clinopyroxene and plagioclase ($An_{66{\sim}71}$) and plagioclase laths ($An_{57{\sim}65}$) showing pillotaxitic and intergranular texture. The Cheonjabong andesite, Cheonjabong basaltic andesite, Sirubong andesite are belong to calc-alkialine but the Cheonjabong basalt is alkaline basalt. By tectonic discrimination diagrams the parental magmas of the volcanic rocks have occurred boundary.

A Nested Cauldron Structure in the Tertiary Miocene Eoil Basin, Southeastern Korea (한반도 동남부 제3기 마이오세 어일분지내 둥지형 화산함몰구조)

  • Son, Moon;Kim, In-Soo;Ock, Soo-Seok
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.121-131
    • /
    • 2001
  • The combination of geological, structural and satellite image studies is used to make an examination of the Miocene eruptive type in the Eoil Basin, SE Korea. The basin subsided by the NW-SE extension due to NNW dextral shearing during the East Sea opening. Based on geological structures as well as lithofacies and ages of the basin-fills, it is divided into the NE subbasin and the SW subbasin which were abundantly filled with basaltic volcanics and marine sediments without volcanic materials, respectively: Syndeposional synclines and anticlines are characteristically developed in the NE subbasin, which amplitudes decrease away from the adjacent normal faults to make them into a homoclinal structure. The thicker lavas as well as the younger agglomerates and lacustrine sediments, which show circular distributions, are distributed around the axial zones of major synclines. The satellite image shows four remarkable circular structures within the NE subbasin. They are located adjacent to and along the normal faults, and they are laid almost exactly on the axial zones of the synclines as well as on the distribution area of the agglomerates and lacustrine sediments. These facts indicate that the basaltic lava effusion were conducted by the normal faults like a kind of fissure-eruption and its activity was more predominant at the sites in where the synclines are developed. More active effusion of lava became a reason for deeper subsidence to make differential subsidence and syndepositional folding adjacent to and along the normal faults. Hence, we suggest that a nested cauldron structure was formed in the NE subbasin of the Eoil Basin, and that the volcanism made the subbasin to be a lava pond and controlled the process of filling and sedimentation in the subbasin.

  • PDF

Hydrocarbon Source Rock Potential of Eocene Forearc and Subduction Zone Strata, Southern Oregon Coast Range, U.S.A. (미국 오레곤 남부 에오세 전호상 및 섭입대 퇴적층의 탄화수소 근원암 가능성)

  • Ryu, In-Chang
    • The Korean Journal of Petroleum Geology
    • /
    • v.11 no.1 s.12
    • /
    • pp.27-41
    • /
    • 2005
  • The hydrocarbon source rock potential of the Eocene units in the southern Oregon Coast Range was evaluated by using the Rock-Eval pyrolysis. Most Eocene units in southern Oregon Coast Range are thermally immature and contain lean, gas-prone Type III kerogen. However, some beds(coals) are sufficiently organic-rich to be sources of biogenic and thermogenic methane discovered in numerous seeps. The overall hydrocarbon source rock potential of the southern Oregon Coast Range is moderately low. Several requirements for commercial accumulations of hydrocarbon, however, probably exist locally within and adjacent areas. Three speculative petroleum systems are identified. The first includes the southern part of the Oregon Coast Range near the border with the Mesozoic Klamath Mountains and is related to a proposed subduction zone maturation mechanism along thrust faults. The second is centered in the northern part of the range and may be associated with basin-centered gas in an over-pressured zone. The third occurs near the eastern border of the range where maturation is related heating by sills and migration of hydrothermal fluids associated with mid-Tertiary volcanism in the Western cascade arc.

  • PDF

Petrology of the Tertiary Basaltic Rocks in the Yeonil and Eoil Basins, Southeastern Korea (한반도 동남부 제3기 연일, 어일분지에 나타나는 현무암질암의 암석학적 연구)

  • Shim, Sung-Ho;Park, Byeong-Jun;Kim, Tae-Hyeong;Jang, Yun-Deuk;Kim, Jung-Hoon;Kim, Jeong-Jin
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.1-21
    • /
    • 2011
  • Eoil basalt in the Eoil basin and Yeonil basalt and its related volcanic rocks in Guryongpo and Daebo area were researched and analyzed to purse the tectonic settings and magma characteristics of those Tertiary volcanic rocks in the south-east Korean peninsula. It is highly suggested that zoning, resorption and sieve texture in plagioclase and reaction rim in pyroxene indicate unstable tectonic environments and complex volcanism in the study area. Volcanic rocks from Janggi basin are identified as basalt and basaltic andesite in TAS diagram and sub-alkaline series in terms of magma differentiation. $Na_2O$ and $K_2O$ show positive trend however FeO, CaO, MgO and $P_2O_5$ indicate negative trend in Harker variation diagram with $SiO_2$. Basaltic rocks from Eoil area are identified as calc-alkaline series in AFM diagram and show medium K series calc-alkaline in $K_2O-SiO_2$ diagram. Compatible trace elements of Co, Ni, V, Zn, and Sc in Yeonil basalt show negative trend with crystallization but incompatible trace element of Ba, Rb show positive trend with $SiO_2$ 0.81~1.00 of $Eu/Eu^*$ value suggests minor effect of plagioclase fractionation in Yeonil basaltic rocks. Plagioclase composition of Eoil basalt ranges from $An_{63.46-98.38}\;Ab_{1.62-32.96}\;Or_{0-3.58}$ (anorthite-labradorite) in core to $An_{40.89-82.44}\;Ab_{17.10-46.43}\;Or_{0-12.68}$ (bytownite-labradorite) in rim. $^{87}Sr/^{86}Sr$ and 143Nd;t44Nd ranges 0.704090~0.704717 and 0.512705~0.512822 respectively. Negative linear trends in 87Sr/86Sr and $^{143}Nd/^{144}Nd$ correlation diagram indicate that magma produced Yeonil basalt and basaltic andesite has been originated as partial melting product of mantle wedge by subducting Pacific plate affected by oceanic crust with less effect of continental crust indicating calc-alkaline magma characteristics.