• Title/Summary/Keyword: Terrestrial radio

Search Result 124, Processing Time 0.224 seconds

Regulation of Common Reception System for Broadcasting Signal (방송 공동수신설비의 설치기준)

  • Her, Young-Tae;Kim, Kwang-Ui;Kwon, Won-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.183-184
    • /
    • 2008
  • From the beginning of a new millennium, the digital broadcasting services had been adopted to cable, satellite and radio broadcasting services as well as the terrestrial TV broadcasting services. The government established the installation standard of digital receiving equipment in 2007, which is needed for taking the new digital broadcasting services without additional facilities in an apartment house. In this paper, I will show the installation standard of digital receiving equipment in an apartment house and give a detailed explanation for the main criteria of it.

  • PDF

Investigation of ITU Radio Regulations Regarding KPS Service Band

  • Subin Lee;Kahee Han;Jong-Hoon Won
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.177-184
    • /
    • 2023
  • In order to reserve frequency bands for stable operation of the Korean Positioning System (KPS), it must be demonstrated that the impact of interference caused by KPS on other services operating in the same bands is tolerable. The International Telecommunication Union (ITU) provides the radio regulations and a compatibility assessment methodology for the coexistence of different services in limited frequency resources. The purpose of this paper is to investigate the radio regulations regarding the compatibility issues between the KPS and other services sharing the same frequency bands. The results of the investigation show that the RNSS system can be operated in the L5-band under the condition that the Power Flux Density (PFD) and Aggregated Equivalent PFD (AEPFD) thresholds specified in the radio regulations are met. In addition, the ITU recommends that the interference-to-noise ratio (INR) protection criteria be met to prevent degradation of the performance of radar systems operating in the L2/L6-band. In the case of the S-band, coordination of allocations for RDSS space stations with respect to terrestrial services is not required if the PFD does not exceed regulated thresholds regulated by ITU.

M&S Software Design of Multiple Radio Positioning Integration System (다중 전파측위 융복합 시스템의 M&S 소프트웨어 설계)

  • Koo, Moonsuk;Kim, YoungJoon;Choi, Kwang-Ho;So, Hyoungmin;Oh, Sang Heon;Kim, Seong-Cheol;Lee, Hyung-Keun;Hwang, Dong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.602-611
    • /
    • 2015
  • Even though GNSS provides highly accurate navigation information all over the world, it is vulnerable to jamming in the electronic warfare due to its weak signal power. The United States and Korea have plans to use terrestrial navigation systems as back-up systems during outage of GNSS. In order to develop back-up systems of GNSS, an M&S software platform is necessary for performance evaluation of various vehicle trajectories and integrated navigation systems. In this paper a design method of an M&S software is proposed for evaluation of multiple radio positioning integration systems. The proposed M&S software consists of a navigation environment generation part, a navigation algorithm part, a GUI part and a coverage analysis part. Effectiveness of the proposed design method is shown by implementing an M&S software for the GPS, DME and eLoran navigation systems.

5G Wireless Communication Technology for Non-Terrestrial Network (비지상네트워크를 위한 5G 무선통신 기술)

  • Kim, J.H.;Yoon, M.Y.;You, D.H.;Lee, M.S.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.6
    • /
    • pp.51-60
    • /
    • 2019
  • As a way to further expand and enable the 5G ecosystem, the $3^{rd}$ Generation Partnership Project (3GPP) is considering the development of a 5G new radio (NR)-based non-terrestrial network (NTN). These NTNs are expected to provide ubiquitous 5G services to user's equipment (especially, in Internet of Things/machine-type communications (IoT/MTC) public safety, and critical communications) by extending service coverage to areas not covered by 5G terrestrial networks. To this end, this NTN is developing scenarios to provide 5G services using spaceborne vehicles, such as geosynchronous and low-Earth orbit satellites, and airborne vehicles, such as unmanned aircraft systems, including high-altitude pseudo-satellites. In addition, various technologies are being studied to satisfy new requirements not considered in 5G NR, such as long propagation delay time, large cell coverage, large Doppler effect, and base station movement. In this paper, we present the scenarios, requirements, technical issues and solutions, and standardization planning for NR-based NTN in 3GPP.

Audio Transcoding for Audio Streams from a T-DTV Broadcasting Station to a T-DMB Receiver

  • Bang, Kyoung-Ho;Park, Young-Cheol;Seo, Jeong-Il
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.664-667
    • /
    • 2006
  • We propose an efficient audio transcoding algorithm that can convert audio streams from terrestrial digital television broadcasting service stations to those for terrestrial digital multimedia broadcasting hand-held receivers. The proposed algorithm avoids the complicated psychoacoustic analysis by calculating the scalefactors of the bit-sliced arithmetic coding encoder directly from the signal-to-noise ratio parameters of the AC-3 decoder. The bit-allocation process is also simplified by cascading the nested distortion control loop. Through subjective evaluation, it is shown that the proposed algorithm provides comparable audio quality to tandem coding but it requires much smaller complexity.

  • PDF

Self-weighted Decentralized Cooperative Spectrum Sensing Based On Notification for Hidden Primary User Detection in SANET-CR Network

  • Huang, Yan;Hui, Bing;Su, Xin;Chang, KyungHi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2561-2576
    • /
    • 2013
  • The ship ad-hoc network (SANET) extends the coverage of the high data-rate terrestrial communications to the ships with the reduced cost in maritime communications. Cognitive radio (CR) has the ability of sensing the radio environment and dynamically reconfiguring the operating parameters, which can make SANET utilize the spectrum efficiently. However, due to the dynamic topology nature and no central entity for data fusion in SANET, the interference brought into the primary network caused by the hidden primary user requires to be carefully managed by a sort of decentralized cooperative spectrum sensing schemes. In this paper, we propose a self-weighted decentralized cooperative spectrum sensing (SWDCSS) scheme to solve such a problem. The analytical and simulation results show that the proposed SWDCSS scheme is reliable to detect the primary user in SANET. As a result, secondary network can efficiently utilize the spectrum band of primary network with little interference to primary network. Referring the complementary receiver operating characteristic (ROC) curves, we observe that with a given false alarm probability, our proposed algorithm reduces the missing probability by 27% than the traditional embedded spectrally agile radio protocol for evacuation (ESCAPE) algorithm in the best condition.

Channel Allocation Method of DAB System considering National SFN (전국 SFN을 고려한 DAB 시스템의 채널 배치 방안)

  • Ju, Sang-Lim;Yang, Kyu-Tae;Lim, Hyoungsoo;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.95-103
    • /
    • 2015
  • The Korea terrestrial broadcasting has TV and Radio, DMB. The TV broadcasting was converted from the analogue method to the digital method at the end of 2012. However the radio broadcasting is still in analogue method. The introduction of digital radio technology will bring many benefits such as high-quality of sound, various additional services and increase of efficiency in frequency utilization. In many countries, the radio broadcasting is been servicing in digital method. The discussion was begun on this year for the introduction of digital radio technology in Korea. So, to prepare against introduction of DAB system among digital radio technology, this paper proposes channel allocation method for each local radio broadcasting and the composition of national SFN, and proves the proposed method through the interference analysis.

IONOSPHERIC EFFECTS ON THE RADIO COMMUNICATION (전파통신에서의 전리층 역할)

  • PYO YOO SURN;CHO KYOUNGSEOK;LEE DONG-HUN;KIM EUNHWA
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.21-25
    • /
    • 2000
  • The ionosphere, the atmosphere of the earth ionized by solar radiations, has been strongly varied with solar activity. The ionosphere varies with the solar cycle, the seasons, the latitudes and during any given day. Radio wave propagation through or in the ionosphere is affected by ionospheric condition so that one needs to consider its effects on operating communication systems normally. For examples, sporadic E may form at any time. It occurs at altitudes between 90 to 140 km (in the E region), and may be spread over a large area or be confined to a small region. Sometimes the sporadic E layer works as a mirror so that the communication signal does not reach the receiver. And radiation from the Sun during large solar flares causes increased ionization in the D region which results in greater absorption of HF radio waves. This phenomenon is called short wave fade-outs. If the flare is large enough, the whole of the HF spectrum can be rendered unusable for a period of time. Due to events on the Sun, sometimes the Earth's magnetic field becomes disturbed. The geomagnetic field and the ionosphere are linked in complex ways and a disturbance in the geomagnetic field can often cause a disturbance in the F region of the ionosphere. An enhancement will not usually concern the HF communicator, but the depression may cause frequencies normally used for communication to be too high with the result that the wave penetrates the ionosphere. Ionospheric storms can occur throughout the solar cycle and are related to coronal mass ejections (CMEs) and coronal holes on the Sun. Except the above mentioned phenomena, there are a lot of things to affect the radio communication. Nowadays, radio technique for probing the terrestrial ionosphere has a tendency to use satellite system such as GPS. To get more accurate information about the variation of the ionospheric electron density, a TEC measurement system is necessary so RRL will operate the system in the near future.

  • PDF

Modulation and Pre-equalization Method to minimize time delay in Equalization Digital On-Channel Repeater (등화형 디지털 동일채널 중계기의 시간지연을 최소화하기 위한 변조 및 전치등화 방법)

  • Park Sung-Ik;Kim Heung-Mook;Seo Jae-Hyun;Eum Ho-Min;Lee Yong-Tae;Lee Jae-Young;Lee Soo-In
    • Journal of Broadcast Engineering
    • /
    • v.11 no.2 s.31
    • /
    • pp.229-241
    • /
    • 2006
  • In this paper we propose and analyze a novel modulation and pre-equalization method to minimize signal processing time delay for the Equalization Digital On-Channel Repeater (EDOCR) in ATSC (Advanced Television Systems Committee) terrestrial digital TV system. The proposed modulation method uses Equi-Ripple (ER) filter coefficients instead of conventional Square Root Raised Cosine (SRRC) after coefficients for VSB (Vestigial Side Bands) pulse shaping. And the proposed pre-equalization method calculates pre-equalizer filter coefficients by using baseband signal as reference signal and demodulated repeater output signal, then generates a new VSB pulse shaping filter coefficients by convolutioning ER filter coefficients and pre-equalizer filter coefficients. The newly generated pulse shaping filter does not have minimized time delay by adjusting the number of pre-taps of the filter, but also compensates linear distortions caused by ER filter and mask filter.

A New Upper Layer Decoding Algorithm for a Hybrid Satellite and Terrestrial Delivery System (혼합된 위성 및 지상 전송 시스템에서 새로운 상위 계층 복호 알고리즘)

  • Kim, Min-Hyuk;Park, Tae-Doo;Kim, Nam-Soo;Kim, Chul-Seung;Jung, Ji-Won;Chun, Seung-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.835-842
    • /
    • 2009
  • DVB-SSP is a new broadcasting system for hybrid satellite communications, which supports mobile handheld systems and fixed terrestrial systems. However, a critical factor must be considered in upper layer decoding which including erasure Reed-Solomon error correction combined with cyclic redundancy check. If there is only one bit error in an IP packet, the entire IP packet is considered as unreliable bytes, even if it contains correct bytes. IF, for example, there is one real byte error, in an If packet of 512 bytes, 511 correct bytes are erased from the frame. Therefore, this paper proposed two kinds of upper layer decoding methods; LLR-based decoding and hybrid decoding. By means of simulation we show that the performance of the proposed decoding algorithm is superior to that of the conventional one.