• Title/Summary/Keyword: Terrestrial Measurements

Search Result 73, Processing Time 0.019 seconds

Validation of ENVI-met Model with In Situ Measurements Considering Spatial Characteristics of Land Use Types (토지이용 유형별 공간특성을 고려한 ENVI-met 모델의 현장측정자료 기반의 검증)

  • Song, Bong-Geun;Park, Kyung-Hun;Jung, Sung-Gwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.2
    • /
    • pp.156-172
    • /
    • 2014
  • This research measures and compares on-site net radiation energy, air temperature, wind speed, and surface temperature considering various spatial characteristics with a focus on land use types in urban areas in Changwon, Southern Gyeongsangnam-do, to analyze the accuracy of an ENVI-met model, which is an analysis program of microclimate. The on-site measurement was performed for three days in a mobile measurement: two days during the daytime and one day during the nighttime. The analysis using the ENVI-met model was also performed in the same time zone as the on-site measurement. The results indicated that the ENVI-met model showed higher net radiation than the on-site measurement by approximately $300Wm^{-2}$ during the daytime whereas the latter showed higher net radiation energy by approximately $200Wm^{-2}$ during the nighttime. The temperature was found to be much higher by approximately $2-6^{\circ}C$ in the on-site measurement during both the daytime and nighttime. The on-site measurement also showed higher surface temperature than the ENVI-met by approximately $7-13^{\circ}C$. In terms of the wind speed, there was a significant difference between the results of the ENVI-met model and on-site measurement. As for the correlation between the results of the ENVI-met model and on-site measurement, the temperature showed significantly high correlation whereas the correlations for the net radiation energy, surface temperature, and wind speed were very low. These results appear to be affected by excessive or under estimation of solar and terrestrial radiation and climatic conditions of the surrounding areas and characteristics of land cover. Hence, these factors should be considered when applying these findings in urban and environment planning for improving the microclimate in urban areas.

A STUDY ON TEMPERATURE VARIATION OF THE UPPER THERMOSPHERE IN THE HIGH LATITUDE THROUGH THE ANALYSIS OF 6300 $\AA$ AIRGLOW DATA (6300 $\AA$ 대기광 자료 분석을 통한 고위도 열권 상부에서의 온도 변화)

  • 정종균;김용하;원영인;이방용
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.94-108
    • /
    • 1997
  • The temperature of the upper thermosphere is generally varied with the solar activity, and largely with geomagnetic activity in the high latitude. The data analyzed in this study are acquired at two ground stations, Thule Air Base($76,5{deg} N, 68.4{deg} W, A = 86{deg}$) and $S{psi}ndre Str{psi}mfjord (67.0{deg} N, 50.9{deg} W, A = 74{deg}$), Greenland. Both stations are located in the high latitude not only geographically but also geomagnetically. The terrestrial night glow at 6300 ${angs}$ from atomic oxygen has been observed from the two ground-based Fabry-Perot interferometers, during periods of 1986~1991 in Thule Air Base and 1986~1994 in $S{psi}ndre Str{psi}mfjord$. Some features noted in this study are as follows: (1) The correlation between the solar activity and the measured thermospheric temperature is highest in the case of $3{leq}Kp{leq}4$ in Thule, and increases with the geomagnetic activity in $S{psi}ndre Str{psi}mfjord$. (2) The measured temperatures at Thule is generally higher than those at $S{psi}ndre Str{psi}mfjord$, but the latter shows steeper slope with the solar activity. (3) The harmonic analysis shows that the diurnal variation(24hrs) is the main feature of the daily temperature variation with a temperature peak at about 13-14 LT (LT=UT-4). However, the semi-diurnal variation is evident during the period of weak solar activity. (4) Generally the predicted temperatures from both MSIS86 and VSH models are lower than the measured temperature, and this discrepancy grows as the solar activity increases. Therefore, we urge modelers to develope a new thermospheric model utilizing broader sets of measurements, especially for high solar activity.

  • PDF

Evaluation of the Satellite-based Air Temperature for All Sky Conditions Using the Automated Mountain Meteorology Station (AMOS) Records: Gangwon Province Case Study (산악기상관측정보를 이용한 위성정보 기반의 전천후 기온 자료의 평가 - 강원권역을 중심으로)

  • Jang, Keunchang;Won, Myoungsoo;Yoon, Sukhee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.1
    • /
    • pp.19-26
    • /
    • 2017
  • Surface air temperature ($T_{air}$) is a key variable for the meteorology and climatology, and is a fundamental factor of the terrestrial ecosystem functions. Satellite remote sensing from the Moderate Resolution Imaging Spectroradiometer (MODIS) provides an opportunity to monitor the $T_{air}$. However, the several problems such as frequent cloud cover and mountainous region can result in substantial retrieval error and signal loss in MODIS $T_{air}$. In this study, satellite-based $T_{air}$ was estimated under both clear and cloudy sky conditions in Gangwon Province using Aqua MODIS07 temperature profile product (MYD07_L2) and GCOM-W1 Advanced Microwave Scanning Radiometer 2 (AMSR2) brightness temperature ($T_b$) at 37 GHz frequency, and was compared with the measurements from the Automated Mountain Meteorology Stations (AMOS). The application of ambient temperature lapse rate was performed to improve the retrieval accuracy in mountainous region, which showed the improvement of estimation accuracy approximately 4% of RMSE. A simple pixel-wise regression method combining synergetic information from MYD07_L2 $T_{air}$ and AMSR2 $T_b$ was applied to estimate surface $T_{air}$ for all sky conditions. The $T_{air}$ retrievals showed favorable agreement in comparison with AMOS data (r=0.80, RMSE=7.9K), though the underestimation was appeared in winter season. Substantial $T_{air}$ retrievals were estimated 61.4% (n=2,657) for cloudy sky conditions. The results presented in this study indicate that the satellite remote sensing can produce the surface $T_{air}$ at the complex mountainous region for all sky conditions.