• Title/Summary/Keyword: Terrestrial LiDAR

Search Result 106, Processing Time 0.028 seconds

Comparison of the Accuracy to the Surveying Data by Terrestrial LiDAR and Total Station (지상LiDAR와 토탈스테이션에 의한 측량성과의 정확도 비교분석)

  • Yang, In-Tae;Shin, Moon-Seung;Lee, Sung-Koo;Shin, Myung-Seup
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.9-15
    • /
    • 2011
  • Nowadays, the Surveying field is growing rapidly in terms of technology such as TS(Total Station) surveying, photographic surveying, digital aerial photogrammetry, utilization of GIS(Geographic Information System) using high-resolution satellite imagery, obtaining 3D Coordinate using GPS. But control point surveying, benchmark measuring, and field Surveying are still performed by the engineers in the field. So, 3D yerrestrial laser scanner comes to the fore recently. 3D terrestrial laser scanner can get 3D coordinate about a number of sites of the subject in a short period with high accuracy. This paper compared the accuracy of data from the performance using 3D terrestrial laser scanner with that of TS. It also obtained the geopositioning accuracy result equivalent to the surveying result of TS. With further researches in the future, it is expected to be used not only in LiDAR itself but also in various areas like reconnaissance Surveying and construction by combining with TS or other Surveying equipments.

  • PDF

Monitoring analysis of Model Slope by using Terrestrial LiDAR data (지상LiDAR자료를 이용한 모형사면의 모니터링)

  • Kim, Sung-Hak;Choi, Seung-Pil;Yang, In-Tae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.4
    • /
    • pp.17-23
    • /
    • 2008
  • A model slope was made to work out a way of detecting the sign of the occurrence of landslides and monitoring analysis was conducted to grasp the slope displacement of Terrestrial LiDAR equipment. As a result, the image of slope displacement could be monitored quickly and the accuracy of monitoring analysis was a deviation of 0.007m, 0.006m and 0.006m on average based on the figures prior to displacement after the first, second and third displacements, respectively. As the figures represent a very small deviation, they will be able to be used helpfully in measuring the displacement of actual slope in the future.

  • PDF

Slope terrain Analysis by using Terrestrial LiDAR Equipment (지상라이다 장비를 이용한 사면지형분석)

  • Ham, Ju-Hyoung;Choi, Seung-Pil;Kim, Mun-Sup;Kim, Uk-Nam
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.291-293
    • /
    • 2010
  • Terrestrial LiDAR can be used to accurately measure the 3D slope terrain because it can obtain the entire shape of the object, instead of only a specific location, while not much influenced by the environment, and it can create more dense and precise 3D coordinates than those of aerial LiDAR. Therefore, in this study, subject areas with different terrain conditions were selected, the terrestrial LiDAR device was used to observe the slope terrain, and a slope terrain analysis technique was proposed based on the observation results.

  • PDF

Noise Removal of Terrestrial LiDAR Data Using Tensor Voting Method (텐서보팅(Tensor Voting)기법을 이용한 지상라이다 자료의 노이즈 처리)

  • Seo, Il-Hong;Sohn, Hong-Gyoo;Kim, Chang-Jae;Lim, Jin-Hee
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.157-160
    • /
    • 2010
  • Terrestrial LiDAR data contains outliers which do not need in processing purpose. That is inefficient in the aspect of productivity. These noise requires manual process to be removed, which causes inefficiency in aspect of productivity. The purpose of this research is to demonstrate a possibility of automatic outlier removal of LiDAR data using 3D Tensor Voting method. For this, we presented in this article about the procedure to perform the application of Tensor Voting algorithm to the real data from terrestrial LiDAR.

  • PDF

Construction of High-Resolution Topographical Map of Macro-tidal Malipo beach through Integration of Terrestrial LiDAR Measurement and MBES Survey at inter-tidal zone (대조차 만리포 해안의 지상 LiDAR와 MBES를 이용한 정밀 지형/수심 측량 및 조간대 접합을 통한 정밀 지형도 작성)

  • Shim, Jae-Seol;Kim, Jin-Ah;Kim, Seon-Jeong;Kim, Sang-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.58-66
    • /
    • 2010
  • In this paper, we have constructed high-resolution topographical map of macro-tidal Malipo beach through integration of terrestrial LiDAR measurement and MBES survey data at inter-tidal zone. To acquire the enough information of inter-tidal zone, we have done terrestrial LiDAR measurement mounted on the roof of vehicle with DGPS through go-stop-scan method at the ebb tide and MBES depth surveying with tide gauge and eye staff measurement for tide correction and MSL calculation at the high tide all together. To integrate two kinds of data, we have unified the vertical coordination standard to Incheon MSL. The mean error of overlapped inter-tidal zone is about 2~6 cm. To verify the accuracy of terrestrial LiDAR, RTK-DGPS measurement have done simultaneously and the difference of Z value RMSE is about 4~7 cm. The resolution of Malipo topographical map is 50 cm and it has constructed to DEM (Digital Elevation Model) based on GIS. Now it has used as an input topography information for the storm-surge inundation prediction models. Also it will be possible to use monitoring of beach process through the long-term periodic measurement and GIS-based 3D spatial analysis calculating the erosion and deposition considering with the artificial beach transition and coastal environmental parameters.

A Study on Estimation of Amount of Debris-Flow using Terrestrial LiDAR (지상 LiDAR를 이용한 토석류 발생량 산정에 관한 기초연구)

  • Jun, Kyewon;Jun, Byonghee;Ahn, Kwangkuk;Jang, Changdeok;Kim, Namgyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.3
    • /
    • pp.63-68
    • /
    • 2010
  • The purpose of this paper is estimating of the amount of debris flow in hazard area using terrestrial LiDAR surveying data. Jecheon area was selected for this study. Then, the surveyed LiDAR information of DEM and 1:5000 digital map of DEM have been compared with each other and the amount of debris flow has been estimated. The result of this study was shown that the amount of erosion was $24,150m^3$ and deposition was $14,296m^3$. Well shape of channelized debris flow, hillslope debris and deposition at the bending reach of a channel can be found in the area. This study on estimation of the amount of debris flow was expected to provide more informations for debris flow of disaster mitigation and simulation work.

Slope Terrain Analysis According to Geographical Feature and Survey Place Based on Terrestrial LiDAR Data (지상라이다 자료를 이용한 지형특성 및 관측위치에 따른 사면지형분석)

  • Choi, Seung-Pil;Ham, Ju-Hyoung;Kim, Mun-Sup;Yang, In-Tae;Kim, Uk-Nam
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.63-68
    • /
    • 2010
  • In this study, subject areas with different topographic feature were selected for the purpose of measuring the slope terrain by setting Terrestrial LiDAR in different places. And the slope terrain was analyzed based on three-dimensional raw data obtained through the measurement of slope terrain. With DEM data obtained from five measurement instances with 5mm of scan interval by setting Terrestrial LiDAR on the site 30m away straight from the slope terrain consisting of asphalt, rock, soil, and plants, the slope terrain was analyzed according to topographic feature. In addition, in consideration of changes in setting location that might affect the measured result, this study reviewed the accuracy of measured data obtained from different measurement areas.

Monitoring Landcreep Using Terrestrial LiDAR and UAVs (지상라이다와 드론을 이용한 땅밀림 모니터링 연구)

  • Jong-Tae Kim;Jung-Hyun Kim;Chang-Hun Lee;Seong-Cheol Park;Chang-Ju Lee;Gyo-Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.27-37
    • /
    • 2023
  • Assessing landcreep requires long-term monitoring, because cracks and steps develop over long periods. However, long-term monitoring using wire extensometers and inclinometers is inefficient in terms of cost and management. Therefore, this study selected an area with active landcreep and evaluated the feasibility of monitoring it using imagesing from terrestrial LiDAR and drones. The results were compared with minute-by-minute data measured in the field using a wire extensometer. The comparison identified subtle differences in the accuracy of the two sets of results, but monitoring using terrestrial LiDAR and drones did generate values similar to the wire extensometer. This demonstrates the potential of basic monitoring using terrestrial LiDAR and drones, although minute-byminute field measurements are required for analyzing and predicting landcreep. In the future, precise monitoring using images will be feasible after verifying image analysis at various levels and accumulating data considering climate and accuracy.

Analysis of Erosion and Deposition by Debris-flow with LiDAR (지상 LiDAR를 이용한 토석류 발생에 의한 침식, 퇴적량 측정)

  • Jun, Byong-Hee;Jang, Chang-Deok;Kim, Nam-Gyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.2
    • /
    • pp.54-63
    • /
    • 2010
  • The intensive rainfall over 455 mm occurred between on 9 to 14 July 2009 triggered debris flows around the mountain area in Jecheon County. We mapped the debris flow area and estimated the debris flow volume using a high resolution digital elevation model (DEM) generated respectively from terrestrial LiDAR (Light Detection And Ranging) and topographic maps. For the LiDAR measurement, the terrestrial laser scanning system RIEGL LMS-Z390i which is equipped with GPS system and high-resolution digital camera were used. After the clipping and filtering, the point data generated by LiDAR scanning were overlapped with digital map and produced DEM after debris flow. The comparison between digital map and LiDAR scanning result showed the erosion and deposition volumes of about $17,586m^3$ and $7,520m^3$, respectively. The LiDAR data allowed comprehensive investigation of the morphological features present along the sliding surface and in the deposit areas.

Evaluation for Earthwork Slope Safety Using Terrestrial LiDAR (지상 LiDAR를 이용한 토공 사면의 안정성 평가)

  • Kim, Hee-Gyoo;Roh, Tae-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.82-92
    • /
    • 2014
  • The ratio of using soil as the main material in construction is quite numerous, and it covers many parts in forms and bases of the structure. Thus, the earthwork forms many structures for social infrastructure, and the stability of these structures is most crucial when completed than under construction. This study executed a field experiment to evaluate the accuracy and utility of the slope, which is an important part in earthwork, when terrestrial LiDAR is obtained, and the results are as follow. First, as the result of the observation using Total Station and terrestrial LiDAR, the horizontal error RMSE was ${\pm}2.2cm$, and the vertical error RMSE was ${\pm}3.0cm$. As the result of the comparison between the errors and permissible range of public surveying regulation, it sufficiently secure the accuracy. Also, the extraction of the check section, which covers the most important part among the stability checks could be scientifically and rationally processed, and these extraction results are expected to be provided as important basic materials for the earthwork slop stability evaluation.