• Title/Summary/Keyword: Terrain relief

Search Result 35, Processing Time 0.027 seconds

Analysis of Digital Terrain Model Display by Comparison of GIS Shaded Relief and Rendering (GIS 음영기복과 렌더링의 비교에 의한 수치지형모형의 표현 분석)

  • Lee, Hyung-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.127-136
    • /
    • 2006
  • Shaded relief is used in the analysis of digital terrain model, but accurate shadow zone has not been affirmed on account of idea only shadow of terrain that would be in shadow are shaded. This study is to analyze each display difference of a digital terrain model by grasping the shadow characteristics of terrain and comparing shaded relief function used terrain display of GIS with a rendering technique. After terrain with road in subject area is selected and created to digital terrain model of TIN, shaded relief and rendering according to altitude and azimuth of the sun at 9:00 am and 3:00 pm is applied. As the results, only backward portions of the terrain that is in shadow from the sunlight are shaded in case of shaded relief. The rendering created the shadow, which is cast by terrain features. By these mutual comparison, this study represented data for understanding of shaded relief. And it is expected that the rendering method could be used to analyze sunshine influence.

  • PDF

The Generation of True Orthophotos from High Resolution Satellites Images

  • Chen, Liang-Chien;Wen, Jen-Yu;Teo, Tee-Ann
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.885-887
    • /
    • 2003
  • The purpose of this investigation is to generate true orthophotos from high resolution satellite images. The major works of this research include 4 parts: (1) determination of orientation parameters, (2) generating traditional orthophotos using terrain model, (3) relief correction for buildings, and (4) process for hidden areas. To determine the position of satellites, we correct the onboard orientation parameters to fine tune the orbit. In the generation of traditional orthophotos, we employ orientation parameters and digital terrain model(DTM) to rectify tilt displacements and relief displacements for terrain. We, then, compute relief displacements for buildings with digital building model (DBM). To avoid double mapping, we detect hidden areas. Due to the satellite’s small field of view, an efficient method for the detection of hidden areas and building rectification will be proposed in this paper. Test areas cover the city of Kaohsiung in southern Taiwan. Test images are from the QuickBird satellite.

  • PDF

The Suggestion of the Image Registration Using Terrain Relief Correction Based on RFM (유리함수모델 기반 표고시차보상기법을 사용한 Image Registration 방안 제안)

  • Kim, Hyun-Suk;Kim, Moon-Gyu;Seo, Doo-Chun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.21-30
    • /
    • 2012
  • When two bands have different look angle in a space-borne camera system, the registration between two bands is required. The registration cannot be modeled with constant parameters because of dynamic of platform and parallax effect. The parallax effect is caused by terrain relief, hence it causes local distortion between two bands. Therefore, the terrain relief correction in order to reduce the parallax effect is required for better registration result, especially for high resolution image data. Such terrain relief correction also can be applied to image data acquired from multiple detectors with different look angle within a band, which is a one of commonly used configuration for a wider swath in space-borne camera system, in order to reduce the distortion between detectors. The RFM is a popular abstract model in remote sensing field, which gives us the relationship between the image plane and geodetic coordinate system. Therefore, we propose a terrain relief correction method based on the RFM. The experiment showed very promising result.

Relationship between Solar Radiation in Complex Terrains and Shaded Relief Images (복잡지형에서의 일사량과 휘도 간의 관계 구명)

  • Yun, Eun-Jeong;Kim, Dae-Jun;Kim, Jin-Hee;Kang, Dae-Gyoon;Kim, Soo-Ock;Kim, Yongseok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.283-294
    • /
    • 2021
  • Solar radiation is an important meteorological factor in the agricultural sector. The ground exposed to sunlight is highly influenced by the surrounding terrains especially in South Korea where the topology is complex. The solar radiation on an inclined surface is estimated using a solar irradiance correction factor for the slope of the terrain along with the solar radiation on a horizontal surface. However, such an estimation method assumes that there is no barrier in surroundings, which blocks sunlight from the sky. This would result in errors in estimation of solar radiation because the effect of shading caused by the surrounding terrain has not been taken into account sufficiently. In this study, the shading effect was simulated to obtain the brightness value (BV), which was used as a correction factor. The shaded relief images, which were generated using a 30m-resolution digital elevation model (DEM), were used to derive the BVs. These images were also prepared using the position of the sun and the relief of the terrain as inputs. The gridded data where the variation of direct solar radiation was quantified as brightness were obtained. The value of cells in the gridded data ranged from 0 (the darkest value) to 255 (the brightest value). The BV analysis was performed using meteorological observation data at 22 stations installed in study area. The observed insolation was compared with the BV of each point under clear and cloudless condition. It was found that brightness values were significantly correlated with the solar radiation, which confirmed that shading due to terrain could explain the variation in direct solar radiation. Further studies are needed to accurately estimate detailed solar radiation using shaded relief images and brightness values.

Classification of Binary Obstacle Terrain Based on 3D World Models for Unmanned Robots (무인로봇을 위한 3D 월드모델에 기초한 Binary 장애지형의 판정)

  • Jin, Gang-Gyoo;Lee, Hyun-Sik;Lee, Yun-Hyung;Lee, Young-Il;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.516-523
    • /
    • 2009
  • Recently, the applications of unmanned robots are increasing in various fields including surveillance and reconnaissance, planet exploration and disaster relief. To perform their missions with success, the robots should be able to evaluate terrain's characteristics quantitatively and identify traversable regions to progress toward a goal using mounted sensors. Recently, the authors have proposed techniques that extract terrain information and analyze traversability for off-road navigation of an unmanned robot. In this paper, we examine the use of 3D world models(terrain maps) to classify obstacle and safe terrain for increasing the reliability of the proposed techniques. A world model is divided into several patches and each patch is classified as belonging either to an obstacle or a non-obstacle using three types of metrics. The effectiveness of the proposed method is verified on real terrain maps.

Evaluation of the Use of Inertial Navigation Systems to Improve the Accuracy of Object Navigation

  • Iasechko, Maksym;Shelukhin, Oleksandr;Maranov, Alexandr;Lukianenko, Serhii;Basarab, Oleksandr;Hutchenko, Oleh
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.71-75
    • /
    • 2021
  • The article discusses the dead reckoning of the traveled path based on the analysis of the video data stream coming from the optoelectronic surveillance devices; the use of relief data makes it possible to partially compensate for the shortcomings of the first method. Using the overlap of the photo-video data stream, the terrain is restored. Comparison with a digital terrain model allows the location of the aircraft to be determined; the use of digital images of the terrain also allows you to determine the coordinates of the location and orientation by comparing the current view information. This method provides high accuracy in determining the absolute coordinates even in the absence of relief. It also allows you to find the absolute position of the camera, even when its approximate coordinates are not known at all.

Suggestion of the Relative Elevation Analysis Methods for Conservation of Local Topography : Focused on Analysis Range (지역규모의 지형경관 보전을 위한 상대고도 분석 방법론 제안 : 분석범위 설정을 중심으로)

  • Song, Wonkyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.5
    • /
    • pp.19-28
    • /
    • 2014
  • Given the structure of Korean mountains, it is more appropriate to apply the relative elevation method than the absolute elevation method. However, so far there were not suitable quantitative methodologies to analyze relative elevation, these analytical concepts were difficult to be utilized in urban environmental planning. This study suggested three methods for analyzing relative elevation, and one method for setting the analytical scope of relative elevation by calculating terrain relief. The results showed that the procedure considering 500m radius of each point and standardizing to 30% of the 7th height ridge was the most effective method to extract the local topography. This methodology is the quantitative tool to be able to conserve local important hills and ridges, and apply to fields of urban environmental planning and ecological restoration, especially urban ecological network.

Slope and Roughness Extraction Method from Terrain Elevation Maps (지형 고도 맵으로부터 기울기와 거칠기 추출 방법)

  • Jin, Gang-Gyoo;Lee, Hyun-Sik;Lee, Yun-Hyung;So, Myung-Ok;Shin, Ok-Keun;Chae, Jeong-Sook;Lee, Young-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.909-915
    • /
    • 2008
  • Recently, the interests in the development and application of unmaned robots are increasing in various fields including surveillance and reconnaissance, planet exploration, and disaster relief. Unmaned robots are usually controlled from distance using radio communications but they should be equipped with an autonomous travelling function to cope with unexpected terrains and obstacles. This means that they should be able to evaluate terrain's characteristics quantitatively using mounted sensors so as to traverse harsh natural terrains autonomously. For this purpose, this paper presents a method for extracting terrain information, that is, slope and roughness from elevation maps as a prior step of traversability analysis. Slope is extracted using the curve fitting based on the least squares method and roughness using three metrics and their weighted average. The effectiveness of the proposed method is verified on both a fractal map and the world model map of a real terrain.

Terrain Information Extraction for Traversability Analysis of Unmaned Robots (무인로봇의 주행성 분석을 위한 지형정보 추출)

  • Jin, Gang-Gyoo;Lee, Hyun-Sik;Lee, Yun-Hyung;So, Myung-Ok;Chae, Jeong-Sook;Lee, Young-Il
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.233-236
    • /
    • 2008
  • Recently, the development and application of unmaned robots are increasing in various fields including surveillance and reconnaissance, planet exploration and disaster relief. Unmaned robots are usually controlled from distance using radio communications but they should be equipped with autonomous travelling function to cope with unexpected terrains and obstacles. This means that unmanned robots should be able to evaluate terrain's characteristics quantitatively using mounted sensors so as to traverse harsh natural terrains autonomously. For this purpose, this paper presents an algorithm for extracting terrain information from elevation maps as an early step of traversability analysis. Slope and roughness information are extracted from a world terrain map based on least squares method and fractal theory, respectively. The effectiveness of the proposed algorithm is verified on both fractal and real terrain maps.

  • PDF

A Simulation of 3-D Navigation System of the Helicopter based on TRN Using Matlab

  • Kim, Eui-Hong;Lee, Hong-Ro
    • Spatial Information Research
    • /
    • v.15 no.4
    • /
    • pp.363-370
    • /
    • 2007
  • This study has been carried for the development of the basic algorithm of helicopter navigation system based on TRN (Terrain Referenced Navigation) with information input from the GPS. The helicopter determines flight path due to Origination-Destination analysis on the Cartesian coordinate system of 3-D DTM. This system shows 3-D mesh map and the O-D flight path profile for the pilot's acknowledgement of the terrain, at first. The system builds TCF (terrain clearance floor) far the buffer zone upon the surface of ground relief to avid the ground collision. If the helicopter enters to the buffer zone during navigation, the real-time warning message which commands to raise the body pops up using Matlab menu. While departing or landing, control of the height of the body is possible. At present, the information (x, y, z coordinates) from the GPS is assumed to be input into the system every 92.8 m of horizontal distance while navigating along flight path. DTM of 3" interval has been adopted from that which was provided by ChumSungDae Co., Ltd..

  • PDF