• Title/Summary/Keyword: Terrain analysis

Search Result 785, Processing Time 0.024 seconds

Prediction of Slope Hazard Probability around Express Way using Decision Tree Model (의사결정나무모형을 이용한 고속도로 주변 급경사지재해 발생가능성 예측)

  • Kim, Chan-Kee;Bak, Gueon Jun;Kim, Joong Chul;Song, Young-Suk;Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2013
  • In this study, the prediction of slope hazard probability was performed to the study area located in Hadae-ri, Woochun-myeon, Hoengsung-gun, Gangwon Province around Youngdong express way using the computer program SHAPP ver 1.0 developed by a decision tree model. The soil samples were collected at total 10 points, and soil tests were performed to measure soil properties. The thematic maps of soil properties such as coefficient of permeability and void ratio were made on the basis of soil test results. The slope angle analysis of topography was performed using a digital map. As the prediction result of slope hazard probability, 2,120 cells among total 27,776 cells were predicted to be in the event of slope hazards. Therefore, the predicted area of occurring slope hazards may be $53,000m^2$ because the analyzed cell size was $5m{\times}5m$.

Case Study for Efficiency of Counter-Debrisflow Structures in Baekyang Mt. (토석류 방재구조물 성능 검토 수치해석 - Case study: 부산 백양산)

  • Jeong, Seokil;Song, Chag Geun;Kim, Hong Taek;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.84-89
    • /
    • 2018
  • The number of landslides has increased since the 2000s due to the increased frequency of heavy rainfall caused by abnormal weather. A variety of debris flow prevention facilities have been installed as a countermeasure against this problem. However, it is not easy to evaluate the efficiency of debris flow prevention structures except for the structures with constant volume such as the erosion dam, because the other structures are limited to be reproduced in simulation program for debris flow. Therefore, the methods by which the debris flow prevention structures were modeled were proposed, and the efficiency of four prevention structures installed in Baekyang Mt. in Busan was evaluated with UDS, which accuracy had been verified, using these methods. The initial amount of debris flow was determined based on landslide which occurred in 2014, and specifications of the complex retaining walls around the settlements were measured and applied modeling for terrain. The numerical results showed that the efficiency of debris flow prevention structures could be quantitatively presented. Among the debris flow prevention structures installed in Baekyang Mt., prevention structure of barrier type for debris flow was the most efficiency and debris flow prevention device was the lowest efficiency when the only depth of debris was evaluated. It seems that this study is meaningful to propose the methods which were used to model the debris flow prevention structures that could not be reproduced in most 2D debris flow numerical analysis programs. If precise verification of the presented methods is carried out, it will be possible to provide clear criteria for the efficiency evaluation method of disaster prevention structures.

Korean Groal Potential Habitat Suitability Model at Soraksan National Park Using Fuzzy Set and Multi-Criteria Evaluation (설악산국립공원내 산양(Nemorhaedus Caudatus Raddeanus)의 잠재 서식지 적합성 모형; 다기준평가기법(MCE)과 퍼지집합(Fuzzy Set)의 도입을 통하여)

  • Choi Tae-Young;Park Chong-Hwa
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.4
    • /
    • pp.28-38
    • /
    • 2004
  • Korean goral (Nemorhaedus caudatus raddeanus) is one of the endangered species in Korea, and the rugged terrain of the Soraksan National Park (373㎢) is a critical habitat for the species. But the goral population is threatened by habitat fragmentation caused by roads and hiking trails. The objective of this study was to develop a potential habitat suitability model for Korean goral in the park, and the model was based on the concepts of fuzzy set theory and multi-criteria evaluation. The process of the suitability modeling could be divided into three steps. First, data for the modeling was collected by using field work and a literature survey. Collected data included 204 points of GPS data obtained through a goral trace survey and through the number of daily visitors to each hiking trail during the peak season of the park. Second, fuzzy set theory was employed for building a GIS data base related to environmental factors affecting the suitability of the goral habitat. Finally, a multiple-criteria evaluation was performed as the final step towards a goral habitat suitability model. The results of the study were as follows. First, characteristics of suitable habitats were the proximity to rock cliffs, scattered pine (Pinus densiflora) patches, ridges, the elevation of 700∼800m, and the aspect of south and southeast. Second, the habitat suitability model had a high classification accuracy of 93.9% for the analysis site, and 95.7% for the validation site at a cut off value of 0.5. Finally, 11.7% of habitatwith more than 0.5 of habitat suitability index was affected by roads and hiking trails in the park.

Analysis and measurement of service area of ocean-based DGPS reference station in Korea (국내 해상 DGPS 기준국의 서비스 영역 측정 및 분석)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1255-1261
    • /
    • 2014
  • Based on the radio wave measurement of korean ocean-based DGPS by season, in this paper, the service coverages of ocean-based DGPS reference stations were analyzed according to the climate and season. The signal strengths and signal-to-noise ratios in the land service areas that are provided by ocean-based DGPS reference stations were measured. The ocean-based DGPS reference station except reference stations on the mountainous terrain and the low ground conductivity provide more than 68% service area in comparison with the designed land service coverage providing by the ocean-based DGPS reference stations. To provide the designed service area that is unrelated to a season, it is necessary to install and operate the DGPS reference station with good ground conductivity and high efficiency antenna. Also, the poor service regions which is generated by obstacles of electric wave on pathway can be resolved by the double service area providing by land-based DGPS reference stations.

Survey Research on Satisfaction and Utilization of New & Renewable Energy Resource Map Service (신재생에너지 자원지도 서비스의 만족도 및 활용도 조사연구)

  • Kim, Hyun-Goo;Kang, Yong-Heaok;Yun, Chang-Yeol;Ko, Yuna
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.1003-1013
    • /
    • 2015
  • The Ministry of Trade, Industry and Energy is now placing emphasis on the importance of a new and renewable energy resource map service as an essential means of promoting the dissemination and adoption of renewable energy and other related industrial activities. To raise satisfaction with the new and renewable energy resource map service and promote its utilization, a survey was conducted on a sample group with an academic research background, i.e. employees of the Korea Institute of Energy Research (KIER) who have a thorough understanding of the technological concepts behind the new and renewable energy resource map. Statistical analysis of the survey results showed a high level of overall satisfaction with the web service for the new and renewable energy resource map. Therefore, it was concluded that the development of practical contents rather than the enhancement of web service convenience is required. A statistically significant trend was also observed whereby, the longer the professional career of the survey respondents, the greater their perception and utilization of, and satisfaction with, the enhanced service, which indicates that their level of understanding and utilization of technological concepts corresponds to their research experience record. In addition, the results obtained from the questionnaires regarding the evaluation of the utilization value of the resource map service indicated that use of the service was equally high in terms of political, business and academic applications. The results confirmed the need to develop multidimensional resource map contents that can be applied to as many fields as possible, rather than focusing on a specific terrain.

Relationship between Abundances of Kaloula borealis and Meteorological Factors based on Habitat Features (서식지 특성에 따른 맹꽁이 개체수와 기상요인과의 관계 분석)

  • Rho, Paikho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.3
    • /
    • pp.103-119
    • /
    • 2016
  • This study aims to assess habitat feature on the large-scale spawning ground of the Boreal Digging Frog Kaloula borealis in Daemyung retarding basin of Daegu, and to analyze the relationships between species abundance and meteorological factors for each habitat. Fifty-seven(57) pitfalls were installed to collect species abundance of 4 survey regions, and high-resolution satellite image, soil sampling equipment, digital topographic map, and GPS were used to develop habitat features such as terrain, soil, vegetation, human disturbance. The analysis shows that the frog is most abundant in sloped region with densely herbaceous cover in southern part of the retarding basin. In the breeding season, lowland regions, where Phragmites communis and P. japonica dominant wetlands and temporary ponds distributed, are heavily concentrated by the species for spawning and foraging. Located in between legally protected Dalsung wetands and lowland regions of the retarding basin, riverine natural levee is ecologically important area as core habitat for Kaloula borealis, and high number of individuals were detected both breeding and non-breeding seasons. Temperate- and pressure-related meteorological elements are selected as statistically significant variables in species abundance of non-breeding season in lowland and highland regions. However, in sloped regions, only a few variables are statistically significant during non-breeding season. Moreover, breeding activities in sloped regions are statistically significant with minimum temperature, grass minimum temperature, dew point temperature, and vapor pressure. Significant meteorological factors with habitat features are effectively applied to establish species conservation strategy of the retarding basin and to construct for avoiding massive road-kills on neighboring roads of the study sites, particularly post-breeding movements from spawning to burrowing areas.

Performance Analysis of Landing Point Designation Technique Based on Relative Distance to Hazard for Lunar Lander (달 착륙선의 위험 상대거리 기반 착륙지 선정기법 성능 분석)

  • Lee, Choong-Min;Park, Young-Bum;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.12-22
    • /
    • 2016
  • Lidar-based hazard avoidance landing system for lunar lander calculates hazard cost with respect to the desired local landing area in order to identify hazard and designate safe landing point where the cost is minimum basically using slope and roughness of the landing area. In this case, if the parameters are only considered, chosen landing target can be designated near hazard threatening the lander. In order to solve this problem and select optimal safe landing point, hazard cost based on relative distance to hazard should not be considered as well as cost based on terrain parameters. In this paper, the effect of hazard cost based on relative distance to hazard on safe landing performance was analyzed and it was confirmed that landing site designation with two relative distances to hazard results in the best safe landing performance by an experiment using three-dimensional depth camera.

Spatial Analysis by Matching Methods using Elevation data of Aerophoto and LIDAR (항공사진과 LIDAR 표고 데이터의 매칭 기법에 의한 공간정보 분석 연구)

  • Yeon, sang-ho;Lee, Young-wook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.449-452
    • /
    • 2008
  • The building heights of big cities which charged with most space are 3-D information as relative vertical distance from ground control points, but they didn't know the heights using contour with maps as lose of skyline or building heights for downtown, practically continuously developed of many technology methods for implementation of 3-D spatial earth. So, For the view as stereos of variety earth form generated 3-D spatial and made terrain perspective map, 3-D simulated of regional and urban space as aviation images. In this papers, it composited geospatial informations and images by DEM generation, and developed and presented for techniques overlay of CAD data and photos captured at our surroundings uses. Particularly, The airborne LiDAR surveying which are very interesting trend have laser scanning sensor and determine the ground heights through detecting angle and range to the grounds, and then designated 3-D spatial composite and simulation from urban areas. Therefore in this papers are suggested ease selections on the users situation by compare as various simulations that its generation of 3-D spatial image by collective for downtown space and urban sub, and the implementation methods for more accurate, more select for the best images.

  • PDF

SPACEBORNE TOPS SAR SYSTEM MODELING AND PERFORMANCE ANALYSIS (TOPS 위성 SAR 모드 시스템 구현 및 성능 평가 연구)

  • Kang, Seo-Li;Song, Jeong-Hwan;Kim, Bum-Seung;Kim, Hyeon-Cheol;Lee, Woo-Kyung
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.74-79
    • /
    • 2014
  • Conventional ScanSAR mode has been adopted in Envisat or Radarsat and played an important role to acquire wide swath SAR images for environmental surveillance. However, it suffers from the undesirable scalloping effect caused by non-homogeneity of antenna pattern while the image resolution is sacrificed. In recent years, TOPS mode has been suggested and put into use to overcome the disadvantages of the conventional scanning mode. Although TOPS mode is able to produce wide-swath SAR image in a short time interval, it demands highly complicated system design knowledge. In this paper, we present the operation principle of TOPS mode and a full SAR simulation is performed to generate TOPS SAR raw data. Azimuth antenna pattern is modified during TOPS mode operation and it is shown that the undesired scalloping effect is suppressed in the generated SAR image.

A study on the landslide detection method using wireless sensor network (WSN) and the establishment of threshold for issuing alarm (무선센서 네트워크를 이용한 산사태 감지방법 및 경로발령 관리 기준치 설정 연구)

  • Kim, Hyung-Woo;Kim, Goo-Soo;Chang, Sung-Bong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.262-267
    • /
    • 2008
  • Recently, landslides frequently occur on natural slope and/or man-made cut slope during periods of intense rainfall. With a rapidly increasing population on or near steep terrain, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide monitoring systems have been developed throughout the world. In this paper, a simple landslide detection system that enables people to escape the endangered area is introduced. The system is focused on the debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of wireless sensor nodes, gateway, and remote server system. Wireless sensor nodes and gateway are deployed by commercially available Microstrain G-Link products. Five wireless sensor nodes and one gateway are installed at the test slope for detecting ground movement. The acceleration and inclination data of test slope can be obtained, which provides a potential to detect landslide. In addition, thresholds to determine whether the test slope is stable or not are suggested by a series of numerical simulations, using geotechnical analysis software package. It is obtained that the alarm should be issued if the x-direction displacement of sensor node is greater than 20mili-meters and the inclination of sensor node is greater than 3 degrees. It is expected that the landslide detection method using wireless senor network can provide early warning where landslides are prone to occur.

  • PDF