• Title/Summary/Keyword: Terrain analysis

Search Result 785, Processing Time 0.033 seconds

Influence of Stack Effect in High-Rise Buildings on Wind Effect in Jeju (Comparative Analysis of Seoul and Jeju) (제주지역 고층건축물에서의 바람의 영향이 굴뚝효과에 미치는 영향 분석 (서울과 제주지역간의 비교 분석))

  • Lim, Chae-Hyun
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.6-12
    • /
    • 2015
  • This study used CONTAM modeling to analyzed analyze the stack effect in high-rise buildings for the terrain and weather conditions of Seoul and Jeju. The differential pressure caused by the stack effect is a function of the indoor and outdoor temperature difference and the height of the vertical shaft. Jeju is considered more stable than Seoul, because it is warmer than Seoul in winter. The differential pressure in Jeju is about 60% that of Seoul in for the same height of buildings in winter. However, Jeju is an island and the neutral plane is raised by over 56% by strong winds, although there is less differential pressure caused by the stack effect in Jeju than in Seoul. Due to the raised neutral plane, the region and magnitude of negative pressure in the lower part is larger in Jeju than in Seoul.

State-of-the-art 3D GIS: System Development Perspectives

  • Kim, Kyong-Ho;Lee, Ki-Won;Lee, Jong-Hun;Yang, Young-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.153-158
    • /
    • 1998
  • Since the mid-1990′s, researches on 3D GIS have been regarded as one of main issues both in the academic sites and commercial vendors; recently, some prototyped systems or the first versioned software systems of commercial basis are being reported and released. Unlike conventional 2D GIS, which consists in intelligent structured GIS or desktop GIS, every 3D GIS has its own distinguished features according to data structure-supporting capability, GIS-styled functionality, external database accessibility, interfacing extents with 2D GIS, 3D visualization/texture mapping ability, and so forth. In this study, technical aspects related to system development, SERI-Web3D GIS ver. 1.2, are explained. Main features in this revised 3D GIS can be summarized: 2-tier system model(client-server), VGFF(Virtual GIS File Format), internal GIS import, Feature manager(zoning, layering, visualization evironment), Scene manager(manage 3D geographic world), Scene editor, Spatial analyzer(Intersect, Buffering, Network analysis), VRML exporter. While, most other 3D GISes or cartographic mapping systems may be categorized into 3D visualization systems handling terrain height-field processing, 2D GIS extension modules, or 3D geometric feature generation system using orthophoto image: actually, these are eventually considered as several parts of "real 3D GIS". As well as these things, other components, especially web-based 3D GIS, are being implemented in this study: Surface/feature integration, Java/VRML linkage, Mesh/Grid problem, LOD(Level of Detail)/Tiling, Public access security problem, 3-tier architecture extension, Surface handling strategy for VRML.

  • PDF

Spatial-temporal Distribution of Soil Moisture at Bumreunsa Hillslope of Sulmachun Watershed Through an Intensive Monitoring (설마천 유역 범륜사사면의 토양수분 시공간 집중변화양상의 측정)

  • Lee, Ga-Young;Kim, Ki-Hoon;Oh, Kyung-Joon;Kim, Sang-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.5 s.154
    • /
    • pp.345-354
    • /
    • 2005
  • Time Domain Reflectometry (TDR) with multiplex system has been installed to configure the spatial and temporal characteristics of soil moisture at the Bumreunsa hillslope of Sulmachun Watershed. An intensive surveying was performed to build a refined digital elevation model (DEM) and flow determination algorithms with inverse surveying have been applied to establish an efficient soil moisture monitoring system. Soil moisture data were collected through intensive monitoring during 380 hrs in November of 2003. Soil moisture data shows corresponding variation characteristics of soil moisture on the upper, middle and lower parts of the hillslope which were classified from terrain analysis. Measured soil moisture data have been discussed on the context of physical process of hydrological modeling.

Analysis of Slope Hazard Probability around Jinjeon-saji Area located in Stone Relics (석조문화재가 위치한 진전사지 주변의 사면재해 가능성 분석)

  • Kim, Kyeong-Su;Song, Young-Suk;Cho, Yong-Chan;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.18 no.3
    • /
    • pp.303-309
    • /
    • 2008
  • A probability of slope hazards was predicted at a natural terrain around the stone relics of Jinjeon-saji area, which is located in Yangyang, Kangwon Province. As the analyzing results of field investigation, laboratory test and geology and geomorphology data, the effect factors of landslides occurrence were evaluated. Also, the landslides prediction map was made up using the prediction model by the effect factors. The landslide susceptibility of stone relics was investigated as the grading classification of occurrence probability. In the landslides prediction map, the high probability area was $3,489m^2$ and it was 10.1% of total prediction area. The high probability area has over 70% of occurrence probability. If landslides are occurred at the predicted area, the three stories stone pagoda of Jinjeon-saji(National treasure No. 122) and the stone lantern of Jinjeon-saji(Treasure No.439) will be collapsed by debris flow.

Railway Object Recognition Using Mobile Laser Scanning Data (모바일 레이저 스캐닝 데이터로부터 철도 시설물 인식에 관한 연구)

  • Luo, Chao;Jwa, Yoon Seok;Sohn, Gun Ho;Won, Jong Un;Lee, Suk
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.2
    • /
    • pp.85-91
    • /
    • 2014
  • The objective of the research is to automatically recognize railway objects from MLS data in which 9 key objects including terrain, track, bed, vegetation, platform, barrier, posts, attachments, powerlines are targeted. The proposed method can be divided into two main sub-steps. First, multi-scale contextual features are extracted to take the advantage of characterizing objects of interest from different geometric levels such as point, line, volumetric and vertical profile. Second, by considering contextual interactions amongst object labels, a contextual classifier is utilized to make a prediction with local coherence. In here, the Conditional Random Field (CRF) is used to incorporate the object context. By maximizing the object label agreement in the local neighborhood, CRF model could compensate the local inconsistency prediction resulting from other local classifiers. The performance of proposed method was evaluated based on the analysis of commission and omission error and shows promising results for the practical use.

A Study on Calculation of Readjustment Height of Urban Region by Geo-spatial Information System - Focused on the Region of YOUNGDO-GU, PUSAN- (지형공간정보체계를 이용한 도시지역의 정지표고 산정에 관한 연구 -부산시 영도구 지역을 중심으로-)

  • 박운용;차성렬;신상철
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.12 no.1
    • /
    • pp.119-129
    • /
    • 1994
  • Geo-spatial information system covers a wide range of applications and technologies and is of great potential interest to many users in government, industry and science. In many civil engineering problems it is necessary to model a landform in order to be able to removed or to be brought in to make the site ready for the proposed developed. The earthwork volume, could be calculated by the trapezoidal formula, Simpson's 1/3 and 3/8 rules. And slope is defined by a plane tangent to the surface as modelled by the digital terrain model at any given point and comprises two components namely, gradient, the maximum rate of change altitude, and aspect, the compass direction of this maximum rate of change. The thesis is the earthwork volume could be counted, readjustment height, slope and aspect analysis of various derived products can be obtained form geo-spatial informations.

  • PDF

Study on Temporal and Spatial Characteristics of Summertime Precipitation over Korean Peninsula (여름철 한반도 강수의 시·공간적 특성 연구)

  • In, So-Ra;Han, Sang-Ok;Im, Eun-Soon;Kim, Ki-Hoon;Shim, JaeKwan
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.159-171
    • /
    • 2014
  • This study investigated the temporal and spatial characteristics of summertime (June-August) precipitation over Korean peninsula, using Korea Meteorological Administration (KMA)is Automated Synoptic Observing System (ASOS) data for the period of 1973-2010 and Automatic Weather System (AWS) data for the period of 1998-2010.The authors looked through climatological features of the summertime precipitation, then examined the degree of locality of the precipitation, and probable precipitation amount and its return period of 100 years (i.e., an extreme precipitation event). The amount of monthly total precipitation showed increasing trends for all the summer months during the investigated 38-year period. In particular, the increasing trends were more significant for the months of July and August. The increasing trend of July was seen to be more attributable to the increase of precipitation intensity than that of frequency, while the increasing trend of August was seen to be played more importantly by the increase of the precipitation frequency. The e-folding distance, which is calculated using the correlation of the precipitation at the reference station with those at all other stations, revealed that it is August that has the highest locality of hourly precipitation, indicating higher potential of localized heavy rainfall in August compared to other summer months. More localized precipitation was observed over the western parts of the Korean peninsula where terrain is relatively smooth. Using the 38-years long series of maximum daily and hourly precipitation as input for FARD2006 (Frequency Analysis of Rainfall Data Program 2006), it was revealed that precipitation events with either 360 mm $day^{-1}$ or 80 mm $h^{-1}$ can occur with the return period of 100 years over the Korean Peninsula.

CUMAP : A Chill Unit Calculator for Spatial Estimation of Dormancy Release Date in Complex Terrain (Chill Unit 축적과 휴면해제시기 공간변이 추정 프로그램 : CUMAP)

  • Kim Kwang S.;Chung U ran;Yun Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.177-182
    • /
    • 2004
  • A chill unit has been used to estimate chilling requirement for dormancy release and risk of freezing damage. A system that calculates chill units was developed to obtain site-specific estimates of dormancy release date for grapes and evaluated in Baekgu myun near Kimje City, Chunbuk, Korea from September 2002 to March 2003. The system utilized daily minimum and maximum temperature maps generated from spatial interpolation with temperature correction for topography. Hourly temperature was temporally interpolated from the daily data using a sine-exponential equation (Patron and Logan, 1981). Hourly chill units were determined from sigmoid, reverse sigmoid, and negatively increasing sigmoid functions based on temperature ranges and summed for 24 h. Cumulative daily chill units obtained from measurements did not increase until 20 October 2002, which was used as a start date for accumulation to estimate the dormancy release date. As a result, a map of dormancy release date in the study area was generated, assuming 800 chill units as a threshold for the chilling requirement. The chill unit accumulation system, implemented using Microsoft Visual Basic and C++ (Microsoft, Redmond, WA, USA), runs in the Windows environment with ArcView (ESRl Inc., Redlands, CA, USA).

A Study on the Map Accuracy Assessment of Positioning Data Using Statistical Approach Analysis (오차분석을 이용한 지도 위치정확도 평가기법에 관한 연구)

  • Cho, Bong-Whan;Lee, Yong-Woong;Choi, Sun-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.5 no.1 s.9
    • /
    • pp.71-80
    • /
    • 1997
  • This paper suggests a Map Accuracy Standards by analyzing U.S. National Map Accuracy Standards, by considering korean terrain feature and statistical error theory for paper and digital maps on the scale of 1:50,000. Map accuracy standards require horizontal accuracy to be reported as a circular error with 90% confidence level through Linear Error Probable(LEP) theory and Circular Error Probable(CEP) theory. In order to verify the proposed methodology for positioning accuracy testing, several kinds of test point were selected and tested. These test points were extracted at the centers of roads and bridges, the comers of the independent building, the edges of geographical botany, and the tops of mountains. The positioning accuracy assessment was peformed by comparing the positions of test points in digital maps generated three different sources with those acquired by high accurate GPS surveying. The digital maps were produced from aerial photographs and SPOT satellite image using analytical plotter and 1:50,000 paper map.

  • PDF

Adaptive Multi-routing Protocol for a High Mobility MANET (변동성이 높은 이동 애드 혹 네트워크를 위한 적응적 다중 라우팅 프로토콜 적용 기법)

  • Deepak, G.C.;Heo, Ung;Choi, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.2
    • /
    • pp.103-110
    • /
    • 2008
  • When there is uncertainty in topological rate of change, motility model and terrain condition, the performance severely degrades in MANET. The concept of transition of routing protocol on the fly according to the network parameters such as coverage, connectivity and mobility etc. may counterbalance the problems stated above. The mathematical modeling of feedback parameters has been derived, and the architecture for the multi-routing protocol system providing an adaptation from one routing protocol to another is also investigated. This paper is extensively devoted on the analysis of mobility, connectivity and their effects on the network and finally transition into another routing protocol according to them.