• Title/Summary/Keyword: Terrain Environment

Search Result 464, Processing Time 0.021 seconds

A Study on the Evaluation of the Short-term Atmospheric Dispersion Models with Terrain Adjustment (지형을 고려한 단기 대기확산모형의 평가에 관한 연구)

  • 최일경;전의찬;김정욱
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.125-134
    • /
    • 1990
  • The purpose of this study is to assess the performance of Short-term atmospheric dispersion models --- ISCST, MPTER, VALLEY --- with terrain adjustment. The models are evaluated through correlation analysis, paired analysis and log-normal culmulative analysis between the measured and predicted concentrations in Samcheonpo area. The correlation coefficients between the measured and predicted concentrations turn out to be higher with terrain adjustment than those without terrain adjustment. In paired analysis, the mean differences and average absolute gross errors of concentrations do not change significantly with terrain adjustment. But the variances of the residuals become much smaller when the terrain is adjusted. Through the log-normal cumulative analysis, it is found that the terrain adjustment improve the prediction performance of MPTER and VALLEY, but do not affect significantly that of ISCST. Overall, it is concluded that the performance of short term atmospheric dispersion models improve when the terrain is considered in computation, especially in MPTER and VALLEY.

  • PDF

A Neighboring Area Search Algorithm for Terrain Following (Terrain Following을 위한 인접지역 탐색 알고리즘)

  • Kim, Jong-Hyuk;Choy, Yoon-Chul;Koh, Kyun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.10
    • /
    • pp.499-506
    • /
    • 2001
  • Terrain Following means that a mobile object, such a user's avatar, must follow terrain, remaining in contact with the ground at all times in virtual environments. This makes a virtual environment have the effects of gravity. Terrain Following is often done using collision detection: however this is inefficient, because general collision detection solves a problem that is inherently more complex than merely determining terrain contact points. Many virtual environments avoid the expense by utilizing a flat terrain with a constant altitude everywhere. This makes a terrain following trivial, but lacks realism. This paper provides as algorithm and a data structure for a terrain following using a neighboring area search as a way to search neighboring polygons. Because this algorithm uses a pre-processing step that stores the terrain polygons for calculating, it results in reducing overheads to workstations that is used to construct and maintain a virtual environment. Consequently, workstation can be used to apply not only a terrain following but also other things.

  • PDF

Numerical Simulation of Effect on Atmospheric Flow Field Using High Resolution Terrain Height Data in Complex Coastal Regions (복잡한 해안지역에서 상세한 지헝고도 자료이용에 따른 대기 유동장의 영향에 관한 수치모의)

  • Lee Hwa Woon;Won Hye Young;Choi Hyun-Jung;Lee Kang-Yeol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.179-189
    • /
    • 2005
  • Recently air quality modeling studies for industrial complex and large cities located in the coastal regions have been carried out. Especially, the representation of atmospheric flow fields within a model domain is very important, because an adequate air quality simulation requires an accurate portrayal of the realistic three -dimensional wind fields. Therefore this study investigated effect of using high resolution terrain height data in numerical simulation. So the experiments were designed according to the detail terrain height with 3second resolution or not. Case 30s was the experiment using the terrain height data of USGS and Case 3s was the other using the detail terrain height data of Ministry of Environment. The results of experimental were more remarkable. In Case 3s, temperature indicated similar tendency comparing to observational data predicting maximum temperature during the daytime and wind speed made weakly for difference of terrain height.

A CPU-GPU Hybrid System of Environment Perception and 3D Terrain Reconstruction for Unmanned Ground Vehicle

  • Song, Wei;Zou, Shuanghui;Tian, Yifei;Sun, Su;Fong, Simon;Cho, Kyungeun;Qiu, Lvyang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1445-1456
    • /
    • 2018
  • Environment perception and three-dimensional (3D) reconstruction tasks are used to provide unmanned ground vehicle (UGV) with driving awareness interfaces. The speed of obstacle segmentation and surrounding terrain reconstruction crucially influences decision making in UGVs. To increase the processing speed of environment information analysis, we develop a CPU-GPU hybrid system of automatic environment perception and 3D terrain reconstruction based on the integration of multiple sensors. The system consists of three functional modules, namely, multi-sensor data collection and pre-processing, environment perception, and 3D reconstruction. To integrate individual datasets collected from different sensors, the pre-processing function registers the sensed LiDAR (light detection and ranging) point clouds, video sequences, and motion information into a global terrain model after filtering redundant and noise data according to the redundancy removal principle. In the environment perception module, the registered discrete points are clustered into ground surface and individual objects by using a ground segmentation method and a connected component labeling algorithm. The estimated ground surface and non-ground objects indicate the terrain to be traversed and obstacles in the environment, thus creating driving awareness. The 3D reconstruction module calibrates the projection matrix between the mounted LiDAR and cameras to map the local point clouds onto the captured video images. Texture meshes and color particle models are used to reconstruct the ground surface and objects of the 3D terrain model, respectively. To accelerate the proposed system, we apply the GPU parallel computation method to implement the applied computer graphics and image processing algorithms in parallel.

An Open Standard-based Terrain Tile Production Chain for Geo-referenced Simulation

  • Yoo, Byoung-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.497-506
    • /
    • 2008
  • The needs for digital models of real environment such as 3D terrain or cyber city model are increasing. Most of applications related with modeling and simulation require virtual environment constructed from geospatial information of real world in order to guarantee reliability and accuracy of the simulation. The most fundamental data for building virtual environment, terrain elevation and orthogonal imagery is acquired from optical sensor of satellite or airplane. Providing interoperable and reusable digital model is important to promote practical application of high-resolution satellite imagery. This paper presents the new research regarding representation of geospatial information, especially for 3D shape and appearance of virtual terrain. and describe framework for constructing real-time 3D model of large terrain based on high-resolution satellite imagery. It provides infrastructure of 3D simulation with geographical context. Web architecture, XML language and open protocols to build a standard based 3D terrain are presented. Details of standard-based approach for providing infrastructure of real-time 3D simulation using high-resolution satellite imagery are also presented. This work would facilitate interchange and interoperability across diverse systems and be usable by governments, industry scientists and general public.

Numerical Models for Atmospheric Diffusion Phenomena by Pseudospectral Method(2) : Spectral Model for a Hilly Terrain of Real Scale (의사스펙트로법에 의한 대기확산현상의 수치모델(2): 실규모의 복잡지형에서의 스펙트로모델)

  • 김선태
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.242-246
    • /
    • 1993
  • Theoretically, spectral method has the highest accuracy among present numerical methods, but it is generally difficult to apply to complex terrains because of complex boundary conditions. Recently, spectral-element method, basically divide the domain into a set of rectangular subdomain and solve the equation at each subdomain, has been introduced. However, boundary conditions become more complex and requires more computing time, thus spectral-element method is not powerful for all complex terrain problems. In this paper, potential flow theory was intorduced to solve the air flows and diffusion phenomenon in the presence of terrain obstacles. Using the velocity potential-stream line orthogonal coordinate space, the diffusion problems of hilly terrain by pseudospectral method were solved and compared those with no terrain real scale solutions.

  • PDF

Development of Automatic Terrain Following Simulator Using Digital Terrain Elevation Data (디지털 지형 고도 데이터를 이용한 자동 지형 추종 시뮬레이터 개발)

  • Jisu Lee;MunGyou Yoo;Hyunju Lee;Ki Hoon Song;Dong-Ik Cheon;Sangchul Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.88-98
    • /
    • 2024
  • In this paper, an Automatic Terrain Following (ATF) Simulator using Digital Terrain Elevation Data (DTED) was proposed. This ATF Simulator consists of a Flight Simulator, a Radar Simulator, and a Terrain Following Computer (TFC) Simulator. DTED and radar scan data generated with DTED were used as the terrain information necessary for terrain following. The ATF Simulator provides three modes of operation: a passive mode that uses DTED, an active mode that uses radar scan data, and a hybrid mode that uses both. We developed an ATF Simulator that could reduce the cost and time required to develop a terrain following system using the LabVIEW development environment and the MATLAB App Designer development environment. It was verified by confirming that the ATF Simulator met all functional requirements.

Numerical Analysis of the Two-Dimensional Pollutant Dispersion Over Hilly Terrain (산지 내 오염물질 확산의 2차원 수치해석)

  • 김현구;이정묵
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.5
    • /
    • pp.383-396
    • /
    • 1997
  • Numerical prediction of the pollutant dispersion over a two-dimensional hilly terrain is presented. The dispersion model used in the present work is based on the gradient diffusion theory and the finite-volume method on a non-orthogonal boundary-fitted grid system. The numerical model is validated by comparing the results with the available experimental data for the flat-floor dispersion within a turbulent boundary-layer. The numerical error analysis is performed based on the guideline of Kasibhatla et al.(1988) for the elevated-source dispersion in the flat-floor boundary layer having a power-law velocity and linear eddy-diffusivity profile. The influences of the two-dimensional hilly terrain on the dispersion from a continuously released source are numerically investigated by changing the emission locations and heights. It is found that the distributions of ground-level concentration are strongly influenced by the source location and the emission height. Hence, the terrain amplification factor is greatly enhanced when the pollutant source is located within a flow separation region. Dispersion from a source of short duration is also simulated and the duration time of the pollutant is compared at several downstream locations on a hilly terrain. The results of the numerical prediction are applied to the evaluation of environmental impacts due to the automobile exhausts at the seashore highway with a parallel mountain range.

  • PDF

Comparison of Complex Terrain Effects in the Air Dispersion Modeling at the Poryong Power Plant Site (보령화력 지역의 복잡지형이 대기확산 모델링에 미치는 영향 비교)

  • 오현선;김영성;김진영;문길주;홍욱희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.6
    • /
    • pp.427-437
    • /
    • 1997
  • Complex terrain which is rather typical topographic character in Korea would greatly influence the dispersion of air pollutant. In this study, we investigated how the complex terrain in the vicinity of the coal-fired plant affects the air dispersion modeling results by using several US EPA models: SCREEN, CTSCREEN, ISCLT3, ISCST3, and RTDM. Screening analysis was followed by long-term analysis, and the plume movement over the terrain was precisely tracked for selected cases. Screening analysis revealed that the highest concentration of sulfur dioxide occurs at the downwind distance of 1.3 km under the unstable conditions with weak winds. However, this highest level of $SO_2$ could be raised by 4 times even in the presence of a hill of 170 m at a distance of 2 to 3 km. Seasonal and annual average concentrations predicted with the ISCLT3, ISCST3, and RTDM models showed a rapid incrase of $SO_2$ levels in front of the high mountains which are located more than 15 km away fromt the source. The highest concentrations predicted with ISCST3 were significantly higher than those with ISCLT3 and RTDM mainly because ISCST3 chooses simple-terrain model calculations for receptors between stack height and plume height. Although the highest levels under the stable conditions were usually found in the areas beyond 15 km or more, their absolute values were not so high due to enough dispersion effects between the source and the receptors.

  • PDF

Study on Numerical Simulation Using Body-fitted Corrdinate System for Complex Terrain (복잡 지표경계 영역에서 경계 일치 좌표계를 이용한 수치 시뮬레이션에 관한 연구)

  • 홍정혜
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.4
    • /
    • pp.339-350
    • /
    • 2000
  • The three-dimensional new corrdinate system over a single hill double hills and complex terrain with a single hill and a rectangular obstacle was generated using a body-fitted coordinate system. Control of the coordinate line distribution in the field was executed by generalizing the elliptic generating system to Poisson equation. ▽2ξ=P. The new coordinate system was well fitted to the surface boundary of single hill and double hills. But in the case of complex terrain with hill and rectangular obstacle there was smoothing tendency around the rectangular obstacle. In order to show the validity of the body-fitted coordinate system the heat diffusion equation was transformed and the temperature distribution was calculated over the various terrain. The results showed the temperature distribution was very symmetrical and stable around hills and obstacle. As a result the couple of a body-fitted coordinate system and the heat diffusion equation were executed successfully. Wind field over complex terrain with hill and rectangular obstacle which represent urban area was simulated stably in body-fitted coordinate system. The qualitative result show the enhancement of wind speed at the upwind direction of a hill and a rectangular obstacle and the recirculation zone at the downwind direction.

  • PDF