• Title/Summary/Keyword: Terrain Data

Search Result 949, Processing Time 0.032 seconds

A CPU-GPU Hybrid System of Environment Perception and 3D Terrain Reconstruction for Unmanned Ground Vehicle

  • Song, Wei;Zou, Shuanghui;Tian, Yifei;Sun, Su;Fong, Simon;Cho, Kyungeun;Qiu, Lvyang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1445-1456
    • /
    • 2018
  • Environment perception and three-dimensional (3D) reconstruction tasks are used to provide unmanned ground vehicle (UGV) with driving awareness interfaces. The speed of obstacle segmentation and surrounding terrain reconstruction crucially influences decision making in UGVs. To increase the processing speed of environment information analysis, we develop a CPU-GPU hybrid system of automatic environment perception and 3D terrain reconstruction based on the integration of multiple sensors. The system consists of three functional modules, namely, multi-sensor data collection and pre-processing, environment perception, and 3D reconstruction. To integrate individual datasets collected from different sensors, the pre-processing function registers the sensed LiDAR (light detection and ranging) point clouds, video sequences, and motion information into a global terrain model after filtering redundant and noise data according to the redundancy removal principle. In the environment perception module, the registered discrete points are clustered into ground surface and individual objects by using a ground segmentation method and a connected component labeling algorithm. The estimated ground surface and non-ground objects indicate the terrain to be traversed and obstacles in the environment, thus creating driving awareness. The 3D reconstruction module calibrates the projection matrix between the mounted LiDAR and cameras to map the local point clouds onto the captured video images. Texture meshes and color particle models are used to reconstruct the ground surface and objects of the 3D terrain model, respectively. To accelerate the proposed system, we apply the GPU parallel computation method to implement the applied computer graphics and image processing algorithms in parallel.

Study of evaluation wind resource detailed area with complex terrain using combined MM5/CALMET system (고해상도 바람지도 구축 시스템에 관한 연구)

  • Lee, Hwa-Woon;Kim, Dong-Hyeuk;Kim, Min-Jung;Lee, Soon-Hwan;Park, Soon-Young;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.274-277
    • /
    • 2008
  • To evaluate high-resolution wind resources for local and coastal area with complex terrain was attemped to combine the prognostic MM5 mesoscale model with CALMET diagnostic modeling this study. Firstly, MM5 was simulated for 1km resolution, nested fine domain, with FDDA using QuikSCAT seawinds data was employed to improve initial meteorological fields. Wind field and other meteorological variables from MM5 with all vertical levels used as initial guess field for CALMET. And 5 surface and 1 radio sonde observation data is performed objective analysis whole domain cells. Initial and boundary condition are given by 3 hourly RDAPS data of KMA in prognostic MM5 simulation. Geophysical data was used high-resolution terrain elevation and land cover(30 seconds) data from USGS with MM5 simulation. On the other hand SRTM 90m resolution and EGIS 30m landuse was adopted for CALMET diagnostic simulation. The simulation was performed on whole year for 2007. Vertical wind field a hour from CALMET and latest results of MM5 simulation was comparison with wind profiler(KEOP-2007 campaign) data at HAENAM site.

  • PDF

Normalized Digital Surface Model Extraction and Slope Parameter Determination through Region Growing of UAV Data (무인항공기 데이터의 영역 확장법 적용을 통한 정규수치표면모델 추출 및 경사도 파라미터 설정)

  • Yeom, Junho;Lee, Wonhee;Kim, Taeheon;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.499-506
    • /
    • 2019
  • NDSM (Normalized Digital Surface Model) is key information for the detailed analysis of remote sensing data. Although NDSM can be simply obtained by subtracting a DTM (Digital Terrain Model) from a DSM (Digital Surface Model), in case of UAV (Unmanned Aerial Vehicle) data, it is difficult to get an accurate DTM due to high resolution characteristics of UAV data containing a large number of complex objects on the ground such as vegetation and urban structures. In this study, RGB-based UAV vegetation index, ExG (Excess Green) was used to extract initial seed points having low ExG values for region growing such that a DTM can be generated cost-effectively based on high resolution UAV data. For this process, local window analysis was applied to resolve the problem of erroneous seed point extraction from local low ExG points. Using the DSM values of seed points, region growing was applied to merge neighboring terrain pixels. Slope criteria were adopted for the region growing process and the seed points were determined as terrain points in case the size of segments is larger than 0.25 ㎡. Various slope criteria were tested to derive the optimized value for UAV data-based NDSM generation. Finally, the extracted terrain points were evaluated and interpolation was performed using the terrain points to generate an NDSM. The proposed method was applied to agricultural area in order to extract the above ground heights of crops and check feasibility of agricultural monitoring.

Walking path design considering with Slope for Mountain Terrain Open space

  • Seul-ki Kang;Ju-won Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.103-111
    • /
    • 2023
  • Mountains area, especially walking in open space is important for special active field which is based on mountain terrain. Recent research on pedestrian-path includes elements about pedestrian and various environment by analyzing network, but it is mainly focusing on limited space except for data-poor terrain like a mountain terrain. This paper proposes an architecture to generate walking path considering the slope for mountain terrain open space through virtual network made of mesh. This architecture shows that it reflects real terrain more effective when measuring distance using slope and is possible to generate mountain walking path using open space unlike other existing services, and is verified through the test. The proposed architecture is expected to utilize for pedestrian-path generation way considering mountain terrain open space in case of distress, mountain rescue and tactical training and so on.

Flood Simulation by using High Quality Geo-spatial Information (고품질 지형공간정보를 이용한 홍수 시뮬레이션)

  • Lee, Hyun-Jik;Hong, Sung-Hwan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.3
    • /
    • pp.97-104
    • /
    • 2010
  • The important factors in a flood simulation are hydrologic data (such as the rainfall and intensity), a threedimensional terrain model, and the hydrologic inundation calculation matrix. Should any of these factors lack accuracy, flood prediction data becomes unreliable and imprecise. The three-dimensional terrain model is constructed based on existing digital maps, current map updates, and airborne LiDAR data. This research analyzes and offers ways to improve the model's accuracy by comparing flood weakness areas selected according to the existing data on flood locations and design frequency.

Elevation Restoration of Natural Terrains Using the Fractal Technique (프랙탈 기법을 이용한 자연지형의 고도 복원)

  • Jin, Gang-Gyoo;Kim, Hyun-Jun
    • Journal of Navigation and Port Research
    • /
    • v.35 no.1
    • /
    • pp.51-56
    • /
    • 2011
  • In this paper, we presents an algorithm which restores lost data or increases resolution of a DTM(Digital terrain model) using fractal theory. Terrain information(fractal dimension and standard deviation) around the patch to be restored is extracted and then with this information and original data, the elevations of cells are interpolated using the random midpoint displacement method. The results of the proposed algorithm are compared with those of the bilinear and bicubic methods on a fractal terrain map.

Quadtree-based Terrain Visualization Using Vertex Multiplication (정점증식을 이용한 사진트리 기반 지형 시각화 기법)

  • Lee, Eun-Seok;Shin, Byeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.15 no.3
    • /
    • pp.27-33
    • /
    • 2009
  • In terrain visualization, the quadtree is the most frequently used data structure for progressive mesh generation. The quadtree provides an efficient level-of-detail selection and view frustum culling. However, most applications using quadtrees are performed by the CPU, since the hierarchical data structure cannot be manipulated in a programmable rendering pipeline. For this reason, quadtree-based methods show lower performance and higher dependancy of CPU in comparison to GPU-based methods. We present a quadtree-based terrain-rendering method for GPU execution that uses vertex multiplication. It offers higher performance than previous CPU-based quadtree methods, without loss of image quality.

  • PDF

GPS Gravity Surveying for the Terrain Analysis at the Choogaryeong Rift Valley between Seoul and Cheolwon (서울-철원간 추가령곡의 지형분석을 위한 GPS 중력측정)

  • 이창호
    • Economic and Environmental Geology
    • /
    • v.32 no.3
    • /
    • pp.281-291
    • /
    • 1999
  • This study presents the gravity data with GPS survrying and the geophysical profiles at the Choogaryeong Rift Valley. And in determing geoid by GPS measurement, survey control points (SCP) whoch built by the Republic of Korean Army are used. Seventy nine SCP and the two triangulation stations are reviewd by GPS. Digital terain model is under for terrain analysis. The analyses of the gravity surveying with GPS are as follows. The low values of the negative Bouguer anomalies represent the high elevation terrain. The Bouguer anomalies show the decrrasing trend toward the eastern part of the study area. Characteristics of free-air anomalies are related with terrain elevation. The regional gravity anomalies decreas toward the eastern part of the study area. The trends of variations are associated with the thermotectonic and geologic structure beneath the Choogaryeong Rift Valley. The most parts of the study area represent negative residual gravity anomalies due to the low dencity of sedimentary cover in the Rift Valley. There are three valleys and four mountains in the direction of NE-SW or NNE-SSW which are structured by the geological features.

  • PDF

Multi-channel Lidar Processing for Terrain Segmentation (지형분할을 위한 다채널 라이다 데이터 처리)

  • Chu, Phuong;Cho, Seoungjae;Sim, Sungdae;Kwak, Kiho;Cho, Kyungeun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.681-682
    • /
    • 2016
  • In this study we propose a novel approach to segment a terrain in two parts: ground and none-ground. The terrain is gained by a multi-channel 3D laser range sensor. We process each vertical line in each frame data. The vertical line is bounded by the sensor's position and a point in the largest circle of the frame. We consider each pair of two consecutive points in each line to find begin-ground and end-ground points. All points placed between a begin-ground point and an end-ground point are ground ones. The other points are none-ground. After examining all vertical lines in the frame, we obtain the terrain segmentation result.

The Survey of Interpolation Methods for the Digital Terrain Model in the Geographic Information System (토지정보관리체계의 수치지형정보에 활용되는 보간법에 대한 비교연구)

  • 이규석;이환용;서혜진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.8 no.2
    • /
    • pp.17-22
    • /
    • 1990
  • The Digital Terrain Model(DTM) data in the Geographic Information System(GIS) needs to be interpolated for various purposes. Three interpolation methods-Bilinear, Bicubic Spline, and Gregory-Newton interpolation-were used, compared, and analyzed in terms of the visual comparison and numerical analysis in the hilly terrain and relatively flat terrain.

  • PDF