• Title/Summary/Keyword: Terrain Crash

Search Result 5, Processing Time 0.019 seconds

Design and implementation of a lifesaving system for handling a car crash and rollover (차량 추락 및 전복 사고 대처를 위한 인명구조 시스템 설계 및 구현)

  • Kim, Chan-goo;Kim, Yong-ju;Moon, Eun-gwang;Lim, A-young;Kwon, Soon-ryang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.622-625
    • /
    • 2016
  • Korea is surrounding by the sea on three sides and consists of mountainous terrain over 65% and the rainfall is high. Therefore, accidents of the vehicle rollover and crash are frequently occurring. Lifesaving system is being urgent required to solve these problems. In this paper, we designed and implemented a lifesaving system for handling a car crash and rollover and verified the functionality through the test.

  • PDF

Review on U.S. Army Helicopter Mishap Analysis for Revision of Crashworthiness Requirements (내추락성 요구도 개정을 위한 미 육군 헬기 사고사례 분석 고찰)

  • Hwang, Jungsun;Lee, Sangmok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.734-739
    • /
    • 2013
  • Representative crashworthiness requirement documents for military helicopter are MIL-STD-1290 and the Aircraft Crash Survival Design Guide(ACSDG) which were lastly revised in the 1980's. Taking analysis results of diverse U.S. Army helicopter mishaps into account, we can say that adequate guidelines do not exist to ensure crashworthiness of new generation aircraft. In this paper, U.S. Army helicopter mishap analysis conducted by U.S. Army Research, Development and Engineering Command(RDECOM) is readjusted to review the basis of new crashworthiness design criteria for military helicopter, in other words, Full Spectrum Crashworthiness Criteria(FSCC). This analysis effort is a part of FSC development. This effort was to research and quantify the dynamics of military aircraft crashes to be used as the quantitative basis for new design criteria.

Development of a Accident Frequency Prediction Model at Rural Multi-Lane Highways (지방부 다차로 도로구간에서의 사고 예측모형 개발 (대도시권 외곽 및 구릉지 특성의 도로구간 중심으로))

  • Lee, Dong-Min;Kim, Do-Hun;Seong, Nak-Mun
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.4
    • /
    • pp.207-215
    • /
    • 2009
  • Generally, traffic accidents can be influenced by variables driving conditions including geometric, roadside design, and traffic conditions. Under the circumstance, homogeneous roadway segments were firstly identified using typical geometric variables obtained from field data collections in this study. These field data collections were conducted at highways located in several areas having various regional conditions for examples, outside metropolitan city; level and rolling rural areas. Due to many zero cells in crash database, a Zero Inflated Poisson model was used to develop crash prediction model to overestimated results in this study. It was found that EXPO, radius, grade, guardrail, mountainous terrain, crosswalk and bus-stop have statistically significant influence on vehicle to vehicle crashes at rural multi-lane roadway segments.

Design of Transportation Safety system with GPS Precise Point Positioning (고정밀 GPS 항법정보 기반 선박통항안전시스템 설계)

  • Song, Se-Phil;Cho, Deuk-Jae;Park, Sul-Gee;Hong, Chul-Eui;Park, Sang-Hyun;Suh, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.37 no.1
    • /
    • pp.71-77
    • /
    • 2013
  • Most of the maritime accidents are the crash that occurred by complex coastal terrain, increased maritime traffic and frequent weather changes. Therefore, transportation safety is exactly determined using accurate environmental informations, but if informations are inaccurate or insufficient, accident risk can be increased. Therefore, ship need the system that can accurately generate transportation safety information. This paper proposes the transportation safety system and performance evaluation in the real environment. The proposed system includes database of environment informations and navigation algorithm using PPP method to estimate the accurate ship position. Therefore, this system can accurately calculate distance or freeboard between ship with other factors. Futhermore, when weather is deteriorated, crew can sail with database based 3-D monitoring module in the transportation safety system. To verify the function and performance, data of Kyungin ARA waterway and ferry is used to evaluation.