• 제목/요약/키워드: Ternary Separation

검색결과 51건 처리시간 0.034초

SEPARATION OF STRONTIUM AND CESIUM FROM TERNARY AND QUATERNARY LITHIUM CHLORIDE-POTASSIUM CHLORIDE SALTS VIA MELT CRYSTALLIZATION

  • WILLIAMS, AMMON N.;PACK, MICHAEL;PHONGIKAROON, SUPATHORN
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.867-874
    • /
    • 2015
  • Separation of cesium chloride (CsCl) and strontium chloride ($SrCl_2$) from the lithium chloride-potassium chloride (LiCl-KCl) salt was studied using a melt crystallization process similar to the reverse vertical Bridgeman growth technique. A ternary $SrCl_2-LiCl-KCl$ salt was explored at similar growth rates (1.8-5 mm/h) and compared with CsCl ternary results to identify similarities. Quaternary experiments were also conducted and compared with the ternary cases to identify trends and possible limitations to the separations process. In the ternary case, as much as 68% of the total salt could be recycled per batch process. In the quaternary experiments, separation of Cs and Sr was nearly identical at the slower rates; however, as the growth rate increased, $SrCl_2$ separated more easily than CsCl. The quaternary results show less separation and rate dependence than in both ternary cases. As an estimated result, only 51% of the total salt could be recycled per batch. Furthermore, two models have been explored to further understand the growth process and separation. A comparison of the experimental and modeling results reveals that the nonmixed model fits reasonably well with the ternary and quaternary data sets. A dimensional analysis was performed and a correlation was identified to semipredict the segregation coefficient.

Phase Behavior of Binary and Ternary Blends Having the Same Chemical Components and Compositions

  • Yoo, Joung-Eun;Kim, Yong;Kim, Chang-Keun;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • 제11권5호
    • /
    • pp.303-310
    • /
    • 2003
  • The phase behavior of binary blends of dimethylpolycarbonate-tetramethyl polycarbonate (DMPCTMPC) copolycarbonates and styrene-acrylonitrile (SAN) copolymers has been examined and then compared with that of DMPC/TMPC/SAN ternary blends having the same chemical components and compositions except that the DMPC and TMPC were present in the form of homopolymers. Both binary and ternary blends were miscible at certain blends compositions, and the miscible blends showed the LCST-type phase behavior or did not phase separated until thermal degradation temperature. The miscible region of binary blends is wider than that of the corresponding ternary blends. Furthermore, the phase-separation temperatures of miscible binary blends are higher than those of miscible ternary blends at the same chemical compositions. To explain the destabilization of polymer mixture with the increase of the number of component, interaction energies of binary pairs involved in these blends were calculated from the phase separation temperatures using lattice-fluid theory and then the phase stability conditions for the polymer mixture was analyzed with volume fluctuation thermodynamics.

THERMALLY INDUCED PHASE SEPARATION IN TERNARY POLYMER SOLUTION

  • Jung, Bum-Suk;Kang, Yong-Soo;Jones, Richard-A.L.
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1999년도 The 7th Summer Workshop of the Membrane Society of Korea
    • /
    • pp.79-82
    • /
    • 1999
  • Using Small Angle Light Scattering (SALS), the effect of quench depth on the kinetics of phase separation for ternary solution blends was investigated. The system was composed of two polymers (polystyrene and polybutadiene) and a solvent (toluene). The analyses of the early stage of phase separation were based of the Cahn-Hilliard theory [1,5]. Apparent diffusion coefficients and the fastest mode of fluctuations were evaluated, when quench depth of the system were varied near the critical composition of polymer. In the late stage of phase separation, the domain growth showed a power law with the 1/3 exponent, i.e. $q_m(t)~t^{-1/3}$. For comparison between real images and scattering profiles with time, the image of phase domains with time were obtained by using Laser Confocal Scanning Microscopy (LSCM).

  • PDF

고성능 액체 크로마토그래피에 의한 기능성 헤테로고리화합물의 분리(I) (Separation of Functionalized Heterocyclic Compounds by High Performance Liquid Chromatography(I))

  • 이광필;조윤진;이영철
    • 분석과학
    • /
    • 제10권6호
    • /
    • pp.408-417
    • /
    • 1997
  • 기능성 헤테로 고리 화합물의 구조 이성질체를 정상 및 역상 액체 크로마토그래피를 이용하여 분리하고, 이들 분리를 위한 최적 조건을 알코올 변형체(modifier)를 포함한 삼성분 이동상(ternary solvent system)을 이용하여 조사했다. 삼성분 이동상의 경우 알코올 변형체가 컬럼의 활성 표면에 우선적으로 상호작용하여 비활성화(deactivation)시킴으로써 용질의 머무름을 감소시키고 꼬리 끌림(tailing)을 억제하여 분리선택성이 좋아지는 것으로 보인다. 구조 이성질체 분리의 경우 정상 액체 크로마토그래피를 이용할 경우가 분리 선택성이 더 좋은 것으로 나타났다. 또한, 헤테로 고리 화합물들의 머무름 거동은 역상 액체 크로마토그래피의 경우는 시료와 정지상과의 소수성 상호작용등으로 설명할 수 있었고, 정상 액체 크로마토그래피의 경우는 시료 분자와 충진제의 흡착표면과의 흡착력으로 설명할 수 있었다.

  • PDF

상 분리법을 이용한 Poly(L-lactic acid) Scaffold제조에 미치는 Pluronics의 영향 (Effect of Added Pluronics on fabrication of Poly(L-lactic acid) Scaffold via Thermally-Induced Phase Separation)

  • 김고은;김현도;이두성
    • 폴리머
    • /
    • 제26권6호
    • /
    • pp.821-828
    • /
    • 2002
  • 미량의 Pluronics가 첨가된 PLLA/l,4-dioxane/water의 삼성분계상을 온도 변화로 유도된상 분리법을 이용하여 10~300 $\mu\textrm{m}$의 공극 크기를 가지며 공극 간의 연결성이 우수한 PLLA 다공성 지지체를 제조하였다. 순수한 PLLA 용액에 Pluronics를 첨가하면 상 분리 온도가 P-123< F-68< F-127 순서로 순차적으로 상승한다. 이는 Pluronics의 양 말단 사슬인 PEO의 영향으로 상분리 진행이 촉진되기 때문이다. 상 분리 온도의 상승으로 스피노달 영역을 증가시켜 높은 온도에서 상 분리 유도가 가능하게 된다. 또한 상 분리 진행 시간 동안에는 계면에 흡수된 Pluronics가 거대 구조를 안정화시켜 상 분리 진행 속도를 지연시키게 된다.

셀룰로오즈 트리아세테이트와 폴리에스테르의 분자복합체 (II) -고체성질- (Molecular Composite of Cellulose Triacetate and Polyester (II) -Bulk Property-)

  • Hong, Young Keun
    • 한국염색가공학회지
    • /
    • 제4권1호
    • /
    • pp.26-29
    • /
    • 1992
  • Ternary solutions that cellulose triacetate (CTA) and polyethylene terephthate (PET) were mixed in a solvent trifiuoroacetic acid (TFA)/methylene chloride (MC) (6/4 : v/v) showed phase separation and mesophase formation. The ternary systems which were mesomorphic were spun into a methanol both and relatively strong cellulosic fillaments were successfully produced. Analysis showed that CTA/PET fibers have fibrillar structure and high orientation parallel to the fiber axis. These fibers proved to be molecular composite and have relatively high strength and modulus as spun.

  • PDF

사성분계 시스템의 액액상분리에 관한 연구 (폴리술폰/폴리에테르술폰/NMP/물) (Liquid-Liquid Phase Separation in a Quaternary System of PolysuIfone/Polyethersulfone/N-Methyl-2-pyrrolidone/water)

  • 백기전;김제영;이환광;김성철
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1998년도 춘계 총회 및 학술발표회
    • /
    • pp.22-24
    • /
    • 1998
  • 1. INTRODUCTION : The phase inversion method is widely used to prepare a variety of polymeric membranes ranging from micro-filtration to gas separation. The final morphology obtained by immersion precipitation strongly reflects the thermodynamics and kinetics of the system involved. The equilibrium thermodynamics of the ternary system of polymer/solvent/ nonsolvent is still very important to understand and predict membrane structure. Polysulfone (PSf) and polyethersulfone (PES) are important polymers as membrane materials due to the chemical resistance, mechanical strength, thermal stability and transport properies. There are several reports on the experimental phase diagrams in ternary mixtures of PSf/solvent/nonsolvent, and PES/solvent/nonsolvent. It would be interesting to investigate the solution thermodynamics containing these two polymers since PES is slightly less hyclrophobic than PSf.

  • PDF

PSA 공정에 의한 이성분 및 삼성분 혼합기체로부터 수소분리 (Hydrogen Separation from Binary and Ternary Mixture Gases by Pressure Swing Adsorption)

  • 강석현;정병만;최현우;안의섭;장성철;김성현;이병권;최대기
    • Korean Chemical Engineering Research
    • /
    • 제43권6호
    • /
    • pp.728-739
    • /
    • 2005
  • 활성탄을 흡착제로 이용한 2bed-6step PSA 공정에서 이성분 혼합기체 $H_2/Ar$(80%/ 20%)와 삼성분 혼합기체 $H_2/Ar/CH_4$(60%/ 20%/ 20%)의 수소 분리를 연구하였다. 비등온-비단열 상태에서 LRC 등온식과 LDF 모델을 고려하여 공정실험과 공정모사를 하였으며, 주기정상상태에 도달할 때까지 탑 내의 농도와 온도변화를 각각 알아보았다. 두 공정 모두에서 수소에 대한 순도 99%와 회수율 75%의 결과를 얻을 수 있었다. 이때, PSA 공정에 미치는 영향으로는 공급유량, 흡착압력 그리고 P/F ratio를 변수로 실험과 전산모사를 수행하여 결과를 비교하였다. 이 결과로부터, 다성분에서 최적의 공정조건을 결정에서 중요한 결정요인과 삼성분에서 최적의 공정조건을 알아보았다.

Analysis of Phase Separation by Thermal Aging in Duplex Stainless Steels by Magnetic Methods

  • Kim, Sunki;Wonmok Jae;Kim, Yongsoo
    • Nuclear Engineering and Technology
    • /
    • 제29권5호
    • /
    • pp.361-367
    • /
    • 1997
  • The phase separation in ferrite phase of duplex stainless steel is the primary cause of thermal aging embrittlement of the LWR primary pressure boundary components. In this study the phase separation of simulated duplex stainless steel was detected by Mossbauer spectroscopy and magnetic property analysis by VSM(Vibrating Specimen Magnetometer). The simulated duplex stainless steels, Fe-Cr binary, Fe-Cr-Ni ternary, and Fe-Cr-Ni-Si quarternary allots, were aged at 370 and 40$0^{\circ}C$ up to 5,340 hours. It was observed from Mossbauer spectra analysis that internal magnetic field increases with aging time and from VSM that the specific saturation magnetization and Curie temperature increase with aging time. These result are indicative that phase separation into Fe-rich region and Cr-rich region is caused by thermal aging in the temperature range of 370~40$0^{\circ}C$ In cases of specimens containing Ni, the increase of specific saturation magnetization is much higher. This implies that Ni seems to promote Fe-Cr interdiffusion, which accelerates the phase separation into Fe-rich $\alpha$ phase and Cr-rich $\alpha$' phase.

  • PDF

Rich Phase Separation Behavior of Biomolecules

  • Shin, Yongdae
    • Molecules and Cells
    • /
    • 제45권1호
    • /
    • pp.6-15
    • /
    • 2022
  • Phase separation is a thermodynamic process leading to the formation of compositionally distinct phases. For the past few years, numerous works have shown that biomolecular phase separation serves as biogenesis mechanisms of diverse intracellular condensates, and aberrant phase transitions are associated with disease states such as neurodegenerative diseases and cancers. Condensates exhibit rich phase behaviors including multiphase internal structuring, noise buffering, and compositional tunability. Recent studies have begun to uncover how a network of intermolecular interactions can give rise to various biophysical features of condensates. Here, we review phase behaviors of biomolecules, particularly with regard to regular solution models of binary and ternary mixtures. We discuss how these theoretical frameworks explain many aspects of the assembly, composition, and miscibility of diverse biomolecular phases, and highlight how a model-based approach can help elucidate the detailed thermodynamic principle for multicomponent intracellular phase separation.