• 제목/요약/키워드: Terminal velocity

검색결과 150건 처리시간 0.023초

싸락눈 종단 속도의 불확실성이 구름 모의에 미치는 영향 (Effects of Uncertainty in Graupel Terminal Velocity on Cloud Simulation)

  • 이현호;백종진
    • 대기
    • /
    • 제26권3호
    • /
    • pp.435-444
    • /
    • 2016
  • In spite of considerable progress in the recent decades, there still remain large uncertainties in numerical cloud models. In this study, effects of uncertainty in terminal velocity of graupel on cloud simulation are investigated. For this, a two-dimensional bin microphysics cloud model is employed, and deep convective clouds are simulated under idealized environmental conditions. In the sensitivity experiments, the terminal velocity of graupel is changed to twice and half the velocity in the control experiment. In the experiment with fast graupel terminal velocity, a large amount of graupel mass is present in the lower layer. On the other hand, in the experiment with slow graupel terminal velocity, almost all graupel mass remains in the upper layer. The graupel size distribution exhibits that as graupel terminal velocity increases, in the lower layer, the number of graupel particles increases and the peak radius in the graupel mass size distribution decreases. In the experiment with fast graupel terminal velocity, the vertical velocity is decreased mainly due to a decrease in riming that leads to a decrease in latent heat release and an increase in evaporative cooling via evaporation, sublimation, and melting that leads to more stable atmosphere. This decrease in vertical velocity causes graupel particles to fall toward the ground easier. By the changes in graupel terminal velocity, the accumulated surface precipitation amount differs up to about two times. This study reveals that the terminal velocity of graupel should be estimated more accurately than it is now.

곡물(穀物)의 공기선별(空氣選別)에 관(關)한 공기동력학적(空氣動力學的) 연구(硏究)(II) -수직풍동(垂直風銅)을 이용(利用)한 곡물(穀物)의 종말속도(終末速度) 측정(測定)- (Aerodynamic Study on Pneumatic Separation of Grains(II) -The Measurement of the Terminal Velocities of Grains-)

  • 이종호;조용진;김만수
    • Journal of Biosystems Engineering
    • /
    • 제15권1호
    • /
    • pp.1-13
    • /
    • 1990
  • Aerodynamic property is the most important factor in designing the pneumatic separator and handling equipment for grains and seeds. Particularly the correct information about the terminal velocities of the corresponding grains and seeds is indispensible. However, a few studies with relation to the terminal velocities of grains and seeds were conducted in this country, even though the terminal velocities of the domestic grains and seeds are required to design those equiments which can be used for the domestic grains and seeds having specific aerodynamic properties. In this study, the terminal velocities for four varieties of varley and six varieties of paddy were investigated by means of two different methods, the suspension method and the drop method in an upward current of air. For measuring the terminal velocities, the vertical wind tunnel which had been examined about the uniform air flow in the previous study was used. In addition, the effect of the size of grains and the moisture content of grain kernel on the terminal velocity was examined. The following conclusions were derived from the study : 1. The different terminal velocities of grains are resulted from the different measuring methods. The terminal velocity measured by the drop method is smaller than that by the suspension method. It is considered that the difference in the terminal velocities is caused by the difference in the projection area of grain which is faced to the air stream. 2. The terminal velocity of grain increases as the size and the moisture content of the kernel increase. 3. The linear regression equations for the terminal velocities of grains were derived in terms of the moisture content of grains by the variety of grains and the measuring method. Also, the linear regression equations for the terminal velocity, based on the weighted size of grains, were derived in terms of the moisture contents of granis.

  • PDF

Calculation of Anchor's Terminal Velocity in the Water and Onshore Dropped Heights Using MDM Technique

  • Shin, Mun-Beom;Seo, Young-Kyo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권2호
    • /
    • pp.59-65
    • /
    • 2017
  • When an anchor is dropped into the sea, there exists a danger of collision on the pipeline and subsea cables in the seabed. This collision could cause huge environmental disasters and serious economic losses. In order to secure the safety of subsea structures such as pipelines and subsea cables from the external impact, it is necessary to estimate the exact external force through the anchor's terminal velocity on the water. FLUENT, a computational fluid dynamic program, was used to acquire the terminal velocity and drag coefficient computation. A half-symmetry condition was used in order to reduce the computational time and a moving deforming mesh technique also adapted to present hydrostatic pressure. The results were examined with the equation based on Newton's Second Law to check the error rate. In this study, three example cases were calculated by stockless anchors of 5.25 ton, 10.5 ton, and 15.4 ton, and for the onshore experiment dropped height was back calculated with the anchor's terminal velocity in the water.

다항식 회귀분석을 이용한 마이크로 버블의 종말상승속도 모델식 구축 및 운전조건 최적화 (Model setup and optimization of the terminal rise velocity of microbubbles using polynomial regression analysis)

  • 박일건;김흥래;조일형
    • 한국응용과학기술학회지
    • /
    • 제35권4호
    • /
    • pp.1393-1406
    • /
    • 2018
  • 본 연구는 3개의 운전변수(압력, 공기량, 운전시간)를 실험 설계하고 마이크로 버블의 종말부상속도(Terminal rise velocity)를 반응 값으로 하여 예측식 모델과 최적 조건을 수립하였다. 다항식 회귀분석을 통해 펌프의 압력($X_1$) 4.5bar, 공기량($X_2$) 3.3L/min 그리고 운전시간($X_3$)이 2.2min에서 종말상승속도(Terminal rise velocity)에 대한 최적값인 5.14 cm/min ($85.7{\mu}m/sec$)을 얻었다. 또한, 레이저 입자계수 측정장치를 이용하여 $2{\sim}5{\mu}m$$25{\sim}50{\mu}m$ 영역에서의 가장 높은 마이크로버블 직경크기 분포를 확인하였다.

마그네슘 부유 분진의 입자 체류시간과 발화온도 (Ignition Temperature and Residence Time of Suspended Magnesium Particles)

  • 한우섭
    • 한국가스학회지
    • /
    • 제19권3호
    • /
    • pp.25-31
    • /
    • 2015
  • 본 연구에서는 부유 Mg분진의 최소발화온도(MIT)에 있어서 입자 체류시간이 어떠한 영향을 주는지를 실험자료와 입자속도의 계산결과를 사용하여 조사하였다. 평균입경이 증가하면 Mg분진의 MIT는 증가하는 반면에 입자 체류시간(Residence time)은 지수함수적으로 감소하여 분진의 발화 가능성이 저하되는 요인이 될 수 있음을 계산을 통해 확인할 수 있었다. 또한 온도증가에 의한 입자속도에의 영향은 평균입경이 클수록 미세하지만 증가하는 결과가 얻어졌다.

액체중을 상승하는 공기포의 괸벽영향 (Effect of Wall Proximity on Air Bubbles Rising in Liquid)

  • Kang, Joon Mo
    • 대한기계학회논문집
    • /
    • 제1권1호
    • /
    • pp.17-25
    • /
    • 1977
  • 관벽의 영향을 무시할 수 있는 요기내의 액체중을 상승하는 단일공기포의 상승속도, 형산, 경로를 명확히 하고 원주형관, 정방형관, 평행평판간의 액체중을 상승하는 단일기포의 상승속도에 미치는 관벽영향을 구하였다. 원주형관을 상승하는 공기포는 dimensionless plot로 실험치를 통 적으로 표현할 수가 있었으며 관벽영향을 받지않고 관중을 상승할 수 있는 공기포에 대한 최저의 관경을 결정할 수가 있었다.

나무 아래 빗방울(雨滴)의 물리적 특성변화 분석 (Evaluation of Changesin the Physical Characteristics of Raindrops Under a Canopy in Central Korea)

  • 김진관;김민석;양동윤;임영신
    • 한국지형학회지
    • /
    • 제23권3호
    • /
    • pp.105-122
    • /
    • 2016
  • To evaluate the changes in the physical characteristics of open rainfall related to canopy effects and rainfall intensity in Korea, the terminal velocity of raindrops and drop size distributions(DSD) were continuously measured by an optical-laser disdrometer in an open site(Op) and in two forest stands(Th1: Larix leptolepis, Th2: Pinus koraiensis) during five rainfall events in 2008. The terminal velocity, DSD and two forms of kinetic energy(KE, $Jm^{-2}$ $mm^{-1}$; KER, $Jm^{-2}$ $h^{-1}$) of open rainfall drops were determined and were compared with those of throughfall drops under two different canopy heights. The effects of the canopy and rainfall intensity, together with wind speed, on the changes in drop size and kinetic energy of throughfall were evaluated. Throughfall drops were larger than open rainfall drops. The distribution of terminal velocities for the drop sizes measured at Th2 was lower than that at Op; however, at Th1 the distribution was similar to that at Op. The total kinetic energy of throughfall at Th1 and Th2 was higher than the total kinetic energy of open rainfall, and the kinetic energy distribution for the drop sizes wassimilar to the drop size distribution. The observed throughfall-KER at Th1 was lower than an estimate previously produced using a model. The overestimation from the modeled value at Th1 was likely to be due to overestimated values of a square root transformation of fall height and its coefficient in the model because the distributions of terminal velocity for the drop size measured at Th1 were similar to those of open rainfall.

PIV 시스템을 이용한 폴리머 용액의 특성시간에 관한 실험적 연구 (A Study of the Characteristics Times of Polymer Solutions Using the PIV System)

  • 이재수;전찬열;박종호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1552-1557
    • /
    • 2004
  • Characteristics diffusion time of viscoelastic fluids are determined experimental results of terminal velocity by using the falling ball viscometer. The characteristics diffusion time of viscoelastic fluids are determined with help of the sphere device which is installed to return the dropped sphere from the bottom of the test cylinder without disturbing the working fluids. Terminal velocity of th sphere the reason why experimental of characteristics diffusion time that it is have an effect on the time interval of the measuring. Viscous of the fluid the temperature changed in order to have an effect on temperature and terminal velocity of the ball it becomes larger the possibility of knowing. A result of visualization for flow phenomena of around the sphere uses the PIV and the density of the polymer solution which it appears 2000wppm is to a case which is the right and left becomes symmetry to be it will be able to confirm and according to the time interval, to observed velocity vector of same at first drop the sphere.

  • PDF

Alfven Wave에 의한 31 Cyg의 Wind 속도 (THE WIND VELOCITIES DRIVEN BY ALFVEN WAVES IN 31 CYG)

  • 김경미;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.63-72
    • /
    • 1991
  • 31Cyg는 Aur형의 장주기 쌍성으로, 확장된 대기를 갖는 초거성과 뜨거운 주계열성으로 이루어져 있다. 초거성의 wind는 질량 손실률이 크고, 차갑고, 낮은 terminal velocity를 갖는데, 일반적으로 Alfven wave가 wind mechanism으로 받어들여지고 있다. 이 논문에서는 31 Cyg에 대해 Alfven wave에 의한 모델을 적용하여 운동방정식을 직접 적분하였는데, 그 terminal velocity가 50∼80km/s로 관측값과 잘 들어 맞았다. 그리고 그 결과를 Kuin과 Ahmad(1989)의 경험적인 모델과 비교하였다.

  • PDF

A Novel Viscosity Measurement Technique Using a Falling Ball Viscometer with a High-speed Camera

  • Jo, Won-Jin;Pak, Bock-Choon;Lee, Dong-Hwan
    • KSTLE International Journal
    • /
    • 제8권1호
    • /
    • pp.16-20
    • /
    • 2007
  • This study introduces a new approach to a falling ball viscometer by using a high speed motion camera to measure the viscosity of both Newtonian and non-Newtonian fluids from the velocity-time data. This method involves capturing continuous photographs of the entire falling motion of the ball as the ball accelerates from the rest to the terminal velocity state. The velocity of a falling ball was determined from the distance traversed by the ball by examining video tape frame by frame using the marked graduations on the surface of the cylinder. Each frame was pre-set at 0.01. Glycerin 74% was used for Newtonian solution, while aqueous solutions of Polyacrylamide and Carboxymethyl Cellulose were for non-Newtonian solutions. The experimental viscosity data were in good agreements with the results obtained from a rotating Brookfield viscometer.