• 제목/요약/키워드: Termal Resistance

검색결과 3건 처리시간 0.017초

평판형 히트파이프의 표면온도 분포에 관한 실험적 연구 (An Experimental Study of surface temperature distribution in Flat-Plate Heat Pipe)

  • 주상현;이영수;나호상;조성환
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.635-639
    • /
    • 2007
  • In this study, optimal design and test of flat-plate heat pipe were carried out in order to improve both thermal response and surface temperature uniformity of heating plate. Experimental results show that the thermal response of flat-plate heat pipe is faster than that of a conventional heating type ones along with less weight and cost. The surface temperature uniformity is also improved.

  • PDF

PEDCVD로 증착된 ILD용 저유전 상수 SiOCH 필름의 특성 (Characterization of low-k dielectric SiOCH film deposited by PECVD for interlayer dielectric)

  • 최용호;김지균;이헌용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.144-147
    • /
    • 2003
  • Cu+ ions drift diffusion in formal oxide film and SiOCH film for interlayer dielectric is evaluated. The diffusion is investigated by measuring shift in the flatband voltage of capacitance/voltage measurements on Cu gate capacitors after bias temperature stressing. At a field of 0.2MV/cm and temperature $200^{\circ}C,\;300^{\circ}C,\;400^{\circ}C,\;500^{\circ}C$ for 10min, 30min, 60min. The Cu+ ions drift rate of $SiOCH(k=2.85{\pm}0.03)$ film is considerable lower than termal oxide. As a result of the experiment, SiOCH film is higher than Thermal oxide film for Cu+ drift diffusion resistance. The important conclusion is that SiOCH film will solve a causing reliability problems aganist Cu+ drift diffuion in dielectric materials.

  • PDF

Effects of Silica Filler and Diluent on Material Properties of Non-Conductive Pastes and Thermal Cycling Reliability of Flip Chip Assembly

  • Jang, Kyung-Woon;Kwon, Woon-Seong;Yim, Myung-Jin;Paik, Kyung-Wook
    • 마이크로전자및패키징학회지
    • /
    • 제10권3호
    • /
    • pp.9-17
    • /
    • 2003
  • In this paper, thermo-mechanical and rheological properties of NCPs (Non-Conductive Pastes) depending on silica filler contents and diluent contents were investigated. And then, thermal cycling (T/C) reliability of flip chip assembly using selected NCPs was verified. As the silica filler content increased, thermo-mechanical properties of NCPs were changed. The higher the silica filler content was added, glass transition temperature ($T_g$) and storage modulus at room temperature became higher. While, coefficient of thermal expansion (CTE) decreased. On the other hand, rheological properties of NCPs were significantly affected by diluent content. As the diluent content increased, viscosity of NCP decreased and thixotropic index increased. However, the addition of diluent deteriorated thermo-mechanical properties such as modulus, CTE, and $T_g$. Based on these results, three candidates of NCPs with various silica filler and diluent contents were selected as adhesives for reliability test of flip chip assemblies. T/C reliability test was performed by measuring changes of NCP bump connection resistance. Results showed that flip chip assembly using NCP with lower CTE and higher modulus exhibited better T/C reliability behavior because of reduced shear strain in NCP adhesive layer.

  • PDF