• Title/Summary/Keyword: Terahertz Band

Search Result 32, Processing Time 0.027 seconds

Outage Probability for Cooperative Nano Communication in the THz Gap Frequency Range

  • Samarasekera, A. Chaminda J.;Shin, Hyundong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.102-122
    • /
    • 2017
  • Nanotechnology has provided a set of tools that the engineers can use to design and manufacture integrated nano devices, which are capable of performing sensing, computing, data storing and actuation. One of the main hurdles for nano devices has been the amount of power that it can generate for transmission of data. In this paper, we proposed cooperative nano communication in the Terahertz (THz) Gap frequency band to increase the range of transmission. Outage probability (OP) performances for the proposed cooperative nano communication networks in the THz band (0.1 - 10THz) have been evaluated for the following scenarios; A) A single decode-and-forward (DF) relay over independent identically distributed (i.i.d.) Rayleigh fading channels, B) DF multi-relay network with best relay selection (BRS) over i.i.d. Rayleigh fading channels, and C) DF multi-relay network with multiple hops with BRS over i.i.d. Rayleigh fading channels. The results show that the transmission distance can be improved significantly by employing DF relays. Also, it is shown that by increasing the number of hops in a relay the OP performance is marginally degraded. The analytical results have been verified by Monte-Carlo simulation.

Trends in Broadband Terahertz Detector Technology (광대역 테라헤르츠 검출 소자 기술 동향)

  • Shin, J.H.;Choi, D.H.;Lee, E.S.;Moon, K.W.;Park, D.W.;Joo, K.I.;Kim, M.G.;Choi, K.S.;Lee, I.M.;Park, K.H.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.53-64
    • /
    • 2020
  • The terahertz (THz) region lies in between the millimeter and infrared spectral bands. A THz wave has the characteristics of non-invasiveness and non-ionization due to low photon energies, while having high penetrability in dielectrics. In addition, since the resonance frequencies of various molecules are included in the THz band, research on the application of spectral analysis and non-destructive testing has been widely studied. Towards this end, the research and development of THz detectors has become increasingly important in order to assess their applications in different areas such as astronomy, security, industrial non-destructive evaluations, biological applications, and wireless communications. In this report, we summarize the operating principles, characteristics, and utilization of various broadband technologies in THz detection devices. Further, we introduce the development status of our Schottky barrier diode technology as one of the broadband THz detectors that can be easily adopted as direct detectors in many fields of applications.

Terahertz Generation by a Resonant Photoconductive Antenna

  • Lee, Kanghee;Lee, Seong Cheol;Kim, Won Tae;Park, Jagang;Min, Bumki;Rotermund, Fabian
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.373-379
    • /
    • 2020
  • In this study, we investigate terahertz (THz) generation by a photoconductive antenna with electrodes in the shape of split-ring resonators. According to our theoretical investigation based on a lumped-circuit model, the inductance of this electrode structure leads to resonant behavior of the photo-induced current. Hence, near the resonance frequency the spectral components generated by a resonant photoconductive antenna can be greater than those produced by a non-resonant one. For experimental verification, a resonant photoconductive antenna, which possesses a resonance mode at 0.6 THz, and a non-resonant photoconductive antenna with stripe-shaped electrodes were fabricated on a semi-insulating GaAs substrate. The THz generation by both of the photoconductive antennas demonstrated a good agreement with the theoretically expected results. The observed relationship between the resonant electrodes of the photoconductive antenna and the generated THz spectrum can be further employed to design a narrow-band THz source with an on-demand frequency.

Experimental demonstration of uncompressed 4K video transmission over directly modulated distributed feedback laser-based terahertz wireless link

  • Eon-Sang Kim;Sang-Rok Moon;Minkyu Sung;Joon Ki Lee;Seung-Hyun Cho
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.193-202
    • /
    • 2023
  • We demonstrate the transmission of uncompressed 4K videos over the photonics-based terahertz (THz) wireless link using a directly modulated distributed feedback laser diode (DFB-LD). For optical heterodyne mixing and data modulation, a DFB-LD was employed and directly modulated with a 5.94-Gb/s non-return-to-zero signal, which is related to a 6G-serial digital interface standard to support ultra-high-definition video resolution. We derived the optimal frequency of the THz carrier by varying the wavelength difference between DFB-LD output and Tunable LD output in the THz signal transmitter to obtain the best transmission performances of the uncompressed 4K video signals. Furthermore, we exploited the negative laser-to-filter detuning for the adiabatic chirp management of the DFB-LD by the intentional discrepancy between the center wavelength of the optical band-pass filter and the output wavelength of the DFB-LD. With the help of the abovementioned methods, we successfully transmitted uncompressed 4K video signals over the 2.3-m wireless transmission distance without black frames induced by time synchronization error.

Performance Analysis of a UAV Energy Harvesting Relay Network in the Terahertz Band (테라헤르츠 대역 무인비행체 에너지 수확 릴레이 네트워크 성능분석)

  • Yeongi Cho;Saifur Rahman Sabuj;Han-Shin Jo
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.411-417
    • /
    • 2023
  • Unmanned aerial vehicle (UAV)-assisted relay has the advantages of ease of deployment, good communication channels, and mobility over traditional terrestrial relay, which greatly improves wireless connectivity. In this paper, we design a UAV-enabled relay network that can utilize radio frequency bands to harvest energy from sources and utilize terahertz (THz) bands to transmit information between secondary transmitters and receivers. Next, we solve the optimal position of the UAV that maximizes the relay channel capacity, and propose an algorithm to design two trajectories of UAV (a straight and an elliptical trajectory) using the derived solution. Numerical results show that the straight trajectory is better in terms of harvested energy and channel capacity.

Cooperative Nano Communication in the THz Gap Frequency Range using Wireless Power Transfer

  • Samarasekera, A. Chaminda J.;Shin, Hyundong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5035-5057
    • /
    • 2019
  • Advancements in nanotechnology and novel nano materials in the past decade have provided a set of tools that can be used to design and manufacture integrated nano devices, which are capable of performing sensing, computing, data storing and actuation. In this paper, we have proposed cooperative nano communication using Power Switching Relay (PSR) Wireless Power Transfer (WPT) protocol and Time Switching Relay (TSR) WPT protocol over independent identically distributed (i.i.d.) Rayleigh fading channels in the Terahertz (THz) Gap frequency band to increase the range of transmission. Outage Probability (OP) performances for the proposed cooperative nano communication networks have been evaluated for the following scenarios: A) A single decode-and-forward (DF) relay for PSR protocol and TSR protocol, B) DF multi-relay network with best relay selection (BRS) for PSR protocol and TSR protocol, and C) DF multi-relay network with multiple DF hops with BRS for PSR protocol and TSR protocol. The results have shown that the transmission distance can be improved significantly by employing DF relays with WPT. They have also shown that by increasing the number of hops in a relay the OP performance is only marginally degraded. The analytical results have been verified by Monte-Carlo simulations.

10-Gbit/s Wireless Communication System at 300 GHz

  • Chung, Tae Jin;Lee, Won-Hui
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.386-396
    • /
    • 2013
  • A 10-Gbit/s wireless communication system operating at a carrier frequency of 300 GHz is presented. The modulation scheme is amplitude shift keying in incoherent mode with a high intermediate frequency (IF) of 30 GHz and a bandwidth of 20 GHz for transmitting a 10-Gbit/s baseband (BB) data signal. A single sideband transmission is implemented using a waveguide-tapered 270-GHz high-pass filter with a lower sideband rejection of around 60 dB. This paper presents an all-electronic design of a terahertz communication system, including the major modules of the BB and IF band as well as the RF modules. The wireless link shows that, aided by a clock and data recovery circuit, it can receive $2^7$-1 pseudorandom binary sequence data without error at up to 10 Gbit/s for over 1.2 m using collimating lenses, where the transmitted power is 10 ${\mu}W$.

Terahertz transmission through femtosecond-machined metal structures

  • Lee, J.U.;Seo, M.;Kim, D.S.;Jeoung, S.C.;Park, Q-Han
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2005.06a
    • /
    • pp.102-103
    • /
    • 2005
  • Using THz time-domain spectroscopy, we study plasmonic band gaps in periodic metal arrays of slits. Femtosecnd machining system guarantees good quality sub millimeter structures for THz spectroscopy. Fabry-Perot effect enhances the transmission when the two resonances cross but does not alter the surface plasmon peak positions.

  • PDF

Optical Characteristics of Bolometric Terahertz Sensor (볼로미터형 테라헤르츠 센서의 광학적 특성 연구)

  • Han, Myung Soo;Song, Woosub;Hong, Jung Taek;Lee, Donghee
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.335-339
    • /
    • 2018
  • The optical characteristics of a terahertz (THz) antenna-coupled bolometer (ACB) detector were evaluated using a pulsed quantum cascade laser (QCL) and radiation blackbody sources. We investigated a method for measuring the responsivity and noise-equivalent power (NEP) of the THz detector using two different types of light sources. When using a QCL source with a frequency of 3 THz, the average responsivity of 24 devices was $1.44{\times}10^3V/W$ and the average NEP of those devices was $3.33{\times}10^{-9}W/{\surd}Hz$. The average responsivity and NEP as measured by blackbody source were $1.79{\times}10^5V/W$ and $6.51{\times}10^{-11}W/{\surd}Hz$, respectively, with the measured values varying depending on the light source. This was because the output power of each light source was different, with the laser source being driven by a pulse type wave and the blackbody source being driven by a continuous wave. The power input to the THz sensor was also different. Futhermore, the responsivity and NEP values measured using band pass filter (BPF) were similar to those measured when using only THz windows. It was found that ACB sensor responds normally in the THz region to both the laser and the blackbody source, and the method was confirmed to effectively evaluate the characteristics of the THz sensor.

Terahertz Detection Characteristics of Low-Temperature Grown InGaAs/InAlAs Multi Quantum Well

  • Park, Dong-U;Han, Im-Sik;Kim, Chang-Su;No, Sam-Gyu;Ji, Yeong-Bin;Tae, In;Lee, Gi-Ju;Kim, Jin-Su;Kim, Jong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.317-318
    • /
    • 2013
  • Terahertz (THz) wave는 광학 영역과 방송파 영역 사이에 광대역 주파수 스펙트럼을 차지하고 있다. X선과는 달리 비이온화 광원으로 직진성, 투과성, 낮은 에너지 (meV)를 가지고 있어 비파괴적이고 무해한 장점을 지니고 있다. 본 연구에서는 In0.53Ga0.47As:Be/In0.52Al0.48As의 multi quantum well (MQW)을 Semi-insulting InP:Fe substrate 위에 active layer의 두께와 적층을 변화주어서 성장하였고Au (200 nm)/Ti (30 nm)의 금속전극으로 공정을 하였다. Ti:Sapphire femtosecond pulse laser를 조사하여 THz time-domain spectrometer 시스템을 이용하여 광전도검출법으로 THz 검출 특성을 연구하였다. THz 검출은 짧은 전하수명과 높은 저항을 요구한다. LTInGaAs의 경우 AsGa antisite로 인하여 짧은 전하수명을 얻게 되면 n-type의 높은 전하밀도를 가지게 되어서 저항이 낮아지게 된다. 높은 저항을 만들기 위하여 Be doping을 이용하여 과잉의 전자들을 보상하고 InAlAs layer를 삽입시켜 보다 높은 저항을 얻었다. LT-InGaAs:Be는 LT-GaAs보다 1/70 정도의 amplitude를 보이는데 LT-InGaAs/InAlAs MQW의 경우 LT-GaAs 대비 약 3/4 정도의 큰 amplitude를 얻었다. 또 active layer의 두께가 얇고 적층이 많을수록 신호가 커지는 것을 알 수 있었다. 이는 상대적으로 band gap이 큰 InAlAs층이 더 높은 저항을 만든 것으로 사료된다.

  • PDF