• Title/Summary/Keyword: Tensioning

Search Result 253, Processing Time 0.03 seconds

Experimental and Numerical Study for Tensioning Air Beam System (텐셔닝 에어빔 시스템(TABS)의 휨실험 및 수치해석)

  • Baek, Ki-Youl;Jung, Mi-Roo;Kim, Jong-Su
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.750-753
    • /
    • 2010
  • 본 논문에서는 텐셔닝 에어빔 시스템(Tensioning Air Beam System: 이하 TABS)의 휨실험 및 수치해석를 통하여 TABS의 성능을 고찰하고자 한다. TABS는 스위스의 엠파(EMPA)에서 Tensairity라는 이름으로 처음 제안되어져, 다수의 연구결과가 발표되었으나 설계에 있어 중요한 변수인 압력, 케이블 장력과 시스템 구조성능의 상관관계가 명확치 않으므로 실제 구조물의 적용에는 정성적, 정량적인 자료가 불충분하다고 할 수 있다. 따라서 텐셔닝 에어빔의 구조성능 파악을 목적으로, 다양한 압력조건과 케이블의 초기장력에 대한 구조실험을 실시하였고, 유한요소법을 이용한 해석결과와 실험값을 비교하여 제안모델의 유효성을 검토하였다.

  • PDF

An Experimental Study on Flexural Behavior of Continuous Prestressed Steel I-Girder with Section Increasement at Internal Supports (지점부 단면형고 확대를 도입한 연속 프리스트레스트 Steel I-Girder의 휨거동에 관한 실험적 연구)

  • Kim, Kyung-Min;Hong, Sung-Nam;Yang, Dong-Suk;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.143-153
    • /
    • 2006
  • The paper presents the results of a study on improvement in flexure capacities of continuous prestressed steel I-girder with section increasement at internal supports. After tensioning, the field experiment on prestressed steel I-girder has been performed in the various aspects of prestressed I-girder introducing section increasement at internal supports, tendon profile.

Development and application of a hybrid prestressed segmental concrete girder utilizing low carbon materials

  • Yang, Jun-Mo;Kim, Jin-Kook
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.371-381
    • /
    • 2019
  • A hybrid prestressed segmental concrete (HPSC) girder utilizing low carbon materials was developed in this paper. This paper introduces the hybrid prestressing concept of pre-tensioning the center segment and assembling all segments by post-tensioning, as well as the development process of the low carbon HPSC girder. First, an optimized mix proportion of 60 MPa high strength concrete containing high volume blast furnace slag was developed, then its mechanical properties and durability characteristics were evaluated. Second, the mechanical properties of 2,400 MPa high strength prestressing strands and the transfer length characteristics in pre-tensioned prestressed concrete beams were evaluated. Third, using those low carbon materials and the hybrid prestressing concept, the HPSC girders were manufactured, and their structural performance was evaluated. A 30-m long HPSC girder for highway bridges and a 35-m long HPSC girder for railway bridges were designed, manufactured, and structurally confirmed as having sufficient strength and safety. Finally, five 35-m long HPSC girders were successfully applied to an actual railway bridge for the first time.

A Study on the Behavior Characteristics of Residual Stress of the Thin Butt Weldment by Mechanical Tensioning Method (인장법에 의한 박판 판계 용접부의 잔류 응력 거동 특성에 관한 연구)

  • Kim, Ha-Keun;Kim, Kyung-Ku;Shin, Sang-Beom
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.57-57
    • /
    • 2010
  • For thin panel welded structure, the various welding distortions were found due to the low resistance against welding deformation. Especially, buckling distortion induced in the thin panel welded structure produce severe problems related to cost in production stage and safety in service life. So, many researches including mechanical and thermal tensioning method for preventing the occurrence of buckling distortion in the production stage have been performed. The purpose of this study is to identify the behavior of longitudinal residual stress at the SA butt weldment with thin plate of 6mm thickness under tension load by 3 dimensional FEA. For it, mesh design for 3D FEA was constructed with 20 nodes brick element for butt weldment and 8 nodes shell element for base metal. According to FEA results, the longitudinal compressive strain inducing tensile residual stress at the butt weldment decreased. It was because the compressive thermal strain in way of weldment was reduced by tension load. The control effect of residual stress increased with an increase in tension load. So, if the amount of tension load applied to the weldment exceeds 1.5 times of longitudinal shrinkage force, the amount of longitudinal residual stress decreased below the critical value inducing the buckling distortion at the SA butt weldment. Its validity was verified by experiment.

  • PDF