• Title/Summary/Keyword: Tension-Hardening

Search Result 140, Processing Time 0.026 seconds

Fracture Simulation of UHPFRC Girder with the Interface Type Model (경계형 모델을 사용한 초고강도 섬유보강 콘크리트거더의 파괴역학적 해석)

  • Guo, Yi-Hong;Han, Sang-Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.81-94
    • /
    • 2010
  • This paper deals with the fracture simulation of UHPFRC girder with the interface type model. Based on the existing numerical simulation of quasi-brittle fracture in normal strength concrete, constitutive modeling for UHPFRC I-girder has been improved by including a tensile hardening at the failure surface. The finite element formulation is based on a triangular unit, constructed from constant strain triangles, with nodes along its sides and neither at the vertex nor the center of the unit. Fracture is simulated through a hardening/softening fracture constitutive law in tension, a softening fracture constitutive law in shear as well as in compression at the boundary nodes, with the material within the triangular unit remaining linear elastic. LCP is used to formulate the path-dependent hardening-softening behavior in non-holonomic rate form and a mathematical programming algorithm is employed to solve the LCP. The piece-wise linear inelastic yielding-failure/failure surface is modeled with two compressive caps, two Mohr-Coulomb failure surfaces, a tensile yielding surface and a tensile failure surface. The comparison between test results and numerical results indicates this method effectively simulates the deformation and failure of specimen.

Impact Performance Evaluation of Advanced High-strength Steel Sheets Based on Combined Continuum-Fracture Mechanics (복합 연속체-파괴 역학에 기초한 초고강도강의 충격 특성 평가)

  • Ma, N.;Park, T.;Kim, D.;Seok, D.;Kim, Chong-Min;Chung, K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.231-234
    • /
    • 2009
  • Based on combined continuum-fracture mechanics, fracture criterion was utilized to predict impact performance of advanced high-strength steel sheets: 340R and TWIP940. The macro-crack propagation behavior at high stress triaxiality was characterized by V-notch tests while deformation behavior at high strain rate was characterized by simple tension tests with various cross head speeds. The characterized mechanical properties were incorporated into the FE program ABAQUS/Explicit to simulate the charpy impact tests, which showed good agreement with experiments.

  • PDF

Experimental and Analytical Researches on Mechanical Properties Related to Formability of AZ31B Alloy Sheet (AZ31B 합금판재 성형관련 기초물성 실험 및 해석 연구)

  • Kim, S.H.;Park, K.D.;Jang, J.H.;Kim, K.T.;Lee, H.W.;Lee, G.A.;Kim, K.P.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.466-472
    • /
    • 2008
  • In this paper, tension tests and formability tests are performed to construct a database related to mechanical properties and the formability of the AZ31B Mg alloy sheet. A forming test with a hemi-spherical punch is conducted at varying temperatures to establish a forming limit diagram. In order to verify the applicability of the analysis using the conventional flow hardening model, a finite element analysis is performed on the hemi-spherical punch forming process and the results are compared with experimental ones. The study investigates problems involving a computational analysis that does not consider flow softening of the magnesium alloy at elevated temperatures.

A Rate-Dependent Elastic Plastic Constitutive Equation in Finite Deformation Based on a Slip Model (슬립모델을 이용한 변형률의존 유한변형 탄소성재료의 구성방정식 개발)

  • 남용윤;김사수;이상갑
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.181-188
    • /
    • 1994
  • Generally, the structural material shows rate dependent behaviors, which require to constitute different strain-stress relations according to strain rates. Conventional rate- independent constitutive equations used in general purpose finite analysis programs are inadequate for dynamic finite strain problems. In this paper, a rate dependent constitutive equation for elastic-plastic material was developed. The plastic stretch rate was modeled based on slip model with dislocation velocity and density so that there is no yielding condition, and no loading conditions. Non-linear hardening rule was also introduced for finite strain. Material constants of present constitutive equation were determined by experimental data of mild steel. The constitutive equation was applied to uniaxile tension. It was appeared that the present constitutive equation well simulates rate dependent behaviors of mild steel.

  • PDF

Evolution of Orthotropic Anisotropy by Simple Shear Deformation (전단변형에 의한 직교이방성의 변화)

  • 김권희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.413-423
    • /
    • 1991
  • Multiaxial loading by combinations of tension-torsion-internal pressure have been applied to the thins-walled tubular specimens prepared from cold drawn tubes of SAE 1020 steel. Prior to the multiaxial loading, each specimen has been twisted to different shear strains. Uniaxial tensile yield stresses measured at different angles to the tube axis clearly show that the initial orthotropic symmetry is maintained during twisting. The orthotropy axes are observed to rotate with shear strains. The plane stress yield locus measured for each twisted specimens show that yield surface shape does not remain similar during twisting and thus anisotropic work hardening is not a function of only plastic work.

Bond and ductility: a theoretical study on the impact of construction details - part 2: structure-specific features

  • Zwicky, Daia
    • Advances in concrete construction
    • /
    • v.1 no.2
    • /
    • pp.137-149
    • /
    • 2013
  • The first part of this two-part paper discussed some basic considerations on bond strength and its effect on strain localization and plastic deformation capacity of cracked structural concrete, and analytically evaluated the impacts of the hardening behavior of reinforcing steel and concrete quality on the basis of the Tension Chord Model. This second part assesses the impacts of the most frequently encountered construction details of existing concrete structures which may not satisfy current design code requirements: bar ribbing, bar spacing, and concrete cover thickness. It further evaluates the impacts of the additional structure-specific features bar diameter and crack spacing. It concludes with some considerations on the application of the findings in practice and an outlook on future research needs.

Constitutive equations for polymer mole and rubbers: Lessons from the $20^{th}$ century

  • Wagner, Manfred H.
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.4
    • /
    • pp.293-304
    • /
    • 1999
  • Refinements of classical theories for entangled or crosslinked polymeric systems have led to incommensurable models for rubber networks and polymer melts, contrary to experimental evidence, which suggests a great deal of similarity. Uniaxial elongation and compression data of linear and branched polymer melts as well as of crosslinked rubbers were analyzed with respect to their nonlinear strain measure. This was found to be the result of two contributions: (1) affine orientation of network strands, and (2) isotropic strand extension. Network strand extension is caused by an increasing restriction of lateral movement of polymer chains due to deformation, and is modelled by a molecular stress function which in the tube concept of Doi and Edwards is the inverse of the relative tube diameter. Up to moderate strains, $f^2$ is found to be linear in the average stretch for melts as well as for rubbers, which corresponds to a constant tube volume. At large strains, rubbers show maximum extensibility, while melts show maximum molecular tension. This maximum value of the molecular stress function governs the ultimate magnitude of the strain-hardening effect of linear and long-chain branched polymer melts in extensional flows.

  • PDF

Finite Element Analysis on the Small Scale Yielding of a Crack Tip in Plane Stress (平面應力狀態 에서 균열先端 의 小規模降伏 에 관한 有限要素解析)

  • 임장근;맹주성;김병용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.3
    • /
    • pp.270-277
    • /
    • 1983
  • Plastic plane stress solutions are given for a center cracked strip, characterized by the Ramberg-Osgood plastic index, under bi-axial tension. Using a power law hardening stress-strain relation, an incremental plasticity finite element formulation is developed, and simple formulation is given for computing J-integral with nodal displacements. The near tip angular distribution of von Mises effective stress doesn't differ significantly in magnitude according to the change of loading stress and bi-axial load combination factor. But, for smaller plastic index, the location of its maximum value moves vertically at a head of crack. J-integral value, in the plastic zone near crack tip, decreases with load combination factor for large and small plastic index.

Nonlinear Analysis of High-Strength R/C Columns Subjected to Reversed Cyclic Loads with Axial Compression (축력과 반복횡력을 받는 고강도 R/C 기둥의 비선형 해석)

  • 신성우;서선민;한범석;안종문;반병열;이광수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.565-570
    • /
    • 2000
  • The objective of this paper is to analyse the high-strength concrete columns subjected to reversed cyclic and axial loads by using nonlinear analysis model and compare the experimental results with analysis. The analytical parameters are the compressive strength of concrete, spacing of lateral reinforcement and lateral reinforcement ratio. In this study, the proposed analytical model takes ito account the influence of confined concrete, tension stiffening and strain hardening of steel. The high-strength concrete columns are used to model fiber section element. The analysis results are shown comparatively good prediction on envelope curve, accumulative dissipated energy, deformability and so on.

  • PDF

Repeated Loading Tests of Reinforced Concrete Beams Containing Headed Shear Reinforcement (Headed Shear Bar를 사용한 콘크리트 보의 반복 하중 실험)

  • 김영훈;윤영수;데니스미첼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.512-517
    • /
    • 2003
  • The repeated loading responses of four shear-critical reinforced concrete beams, with two different shear span-to-depth ratios, were studied. One series of beams was reinforced using pairs of bundled stirrups with $90^{\circ}C$ standard hooks, having free end extensions of $6d_b$. The companion beams contained shear reinforcement made with larger diameter headed bars anchored with 50mm diameter circular heads. A single headed bar had the same area as a pair of bundled stirrups and hence the two series were comparable. The test results indicate that beams containing headed bar stirrups have a superior performance to companion beams containing bundled standard stirrups, with improved ductility, larger energy adsorption and enhanced post-peak load carrying capability. Due to splitting of the concrete cover and local crushing, the hooks of the standard stirrups opened, resulting in loss of anchorage. In contrast, the headed bar stirrups did not lose their anchorage and hence were able to develop strain hardening and also served to delay buckling of the flexural compression steel. Excellent load-deflection predictions were obtained by reducing the tension stiffening to account for repeated load effects.

  • PDF