• Title/Summary/Keyword: Tension transfer

Search Result 198, Processing Time 0.022 seconds

A Study on the Ink Transfer Using the Roughness and Substrate Energy of Substrate in Roll to Roll Printing Systems (롤투롤 인쇄 시스템에서의 기판 소재의 거칠기와 표면에너지를 이용한 잉크 전이에 대한 연구)

  • Shin, Kee-Hyun;Kim, Ho-Joon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.103-109
    • /
    • 2010
  • An ink transfer is modeled and experimentally verified using roll-to-roll electric direct gravure printing process. The ink transfer model based on the physical mechanism for the maximum ink transfer rate is proposed, and experimented by the electric printing machine in FDRC for the relations of the maximum ink transfer rates to the printing pressure, the operating speed, the operating tension, the surface roughness of substrates, and the contact angle between substrate and silver ink. The free ink split coefficient and immobilized ink under the maximum ink transfer rate are calculated by the physical parameter in a printing process and contact angle between substrates and ink. Numerical simulations and experimental studies were carried out to verify performances of the proposed ink transfer model. Results showed that the proposed ink transfer model was effective for the prediction of the amount of transferred ink to the substrate in a direct gravure printing systems.

멀티스팬 연속공정 시스템의 장력 특성에 관한 실험적 연구

  • 신기현;권순오;천성민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.917-920
    • /
    • 1995
  • A mathematical model describing the relationship between longitudinal tension and tangential velocity of web/roller in a multi-span web transport system has been developed. An experiment was carried out for typical conditions to validate the mathematical model for tension behavior in a multispan system. A two-span prototype prototype web transport system with winder and unwinder was manufactured for the experiment. By comparing simulation and experimental results, the mathematical model for tension and velocity in a multi-span web transport system is confirmed to be valid for typical conditions. Tension transfer phenomenon was also confirmed though the simulation as well as experimentation.

  • PDF

A Study on Tension and Temperature Control for Continuous Sterilizer (연속 살균기의 장력 및 온도제어에 관한 연구)

  • Cheol Jae Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.4_2
    • /
    • pp.869-876
    • /
    • 2024
  • In this paper, a tension control system is developed to control temperature deviation due to tension fluctuations in a continuous sterilizer. The fluid flow in the sterilizer is expressed by conservation equations, and the tension control system is modeled using the mass flow rate between two transfer rolls. We analyze the elastic and shear deformation of the internal chain in the sterilizer. As a result of the tension control simulation, it is seen that the tension is recovered about 0.3 sec after the tension deviation. Using a experimental test, we show that the average temperature is similar, but the temperature deviation is improved from 3.1℃ to 1.2℃.

An Experimental Study on Condensation Heat Transfer of Low-Finned Tubes (낮은 핀관 (low-fin tube)의 응축 열전달 성능에 관한 실험적 연구)

  • Kim, N.H.;Jung, I.K.;Kim, K.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.298-309
    • /
    • 1995
  • Low-fin tubes are widely used to enhance condensation heat transfer. In this study, condensation heat transfer experiment was conducted on the low-fin tube using R-11. Three different fin densities-787 fpm (fins per meter), 1102 fpm. 1378 fpm-were tested. The results show that low-fin tube enhances the condensation heat transfer considerablely. The enhancement increases as the fin density increases. It was also found that the fin shape and height have a significant effect on the condensation heat transfer coefficient. Slender or high fins showed a higher condensing heat transfer coefficient compared with fat, low fins. For the tube with 1378 fpm, however, excessive fin height decreased the condensing heat transfer coefficient. The reason may be attributed to the increasing condensate retention angle as the fin density increases. The experimental data are compared with existing prediction models. Results show that Webb's surface tension model predicted the data best (within ${\pm}20%$), which confirms that surface tension plays the major role in low-fin tube condensation.

  • PDF

An experimental study on the relationship between longitudinal and lateral motion of a moving web (장력과 사행거동의 상호작용에 관한 실험적 연구)

  • Sin, Gi-Hyeon;Gwon, Sun-O
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2003.11a
    • /
    • pp.209-216
    • /
    • 2003
  • There are two kinds of controllers in a continuous process system. One is for tension control of a moving web and the other for lateral motion control. The inter-connection between tension and lateral behaivior of web has not yet been considered in the analysis of web dynamics and designing of control stragagies. But the effect of tension variation on the lateral motion of a moving web is observed in the most manufacturing systems. In this paper, experimental studies was carried out to find out the inter-correlation between tension and lateral motion of a web using a 3-span web transport system which consists of two displacement type guiders. As a result, it was found that there are typical operating conditions that tension and lateral motion are correlated each other.

  • PDF

A study on the characteristics of multi load transfer ground anchor system (다중정착 지반앵커의 하중전달 특성에 관한 연구)

  • Kim, Ji-Ho;Jeong, Hyeon-Sic;Kwon, Oh-Yeob;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.25-50
    • /
    • 2014
  • In order to identify a load transfer mechanism of ground anchors, the behavior of multi load transfer ground anchor systems was investigated and compared with those of compression type anchors and tension type anchors. Large scale model tests were performed and stress-strain relationships were obtained. The load transfer mechanism of ground anchors was also investigated in the field tests. Finally, numerical analyses to predict the load-displacement relationships of anchors were conducted. It is concluded that the load transfer characteristics of MLT anchors are mechanically much more superior in the pull-out resistance effect than those of existing compression and tension type anchors. From the results of research work, we could suggest that the max pull-out capacity of anchor capacity to each the soil condition. Also, the MLT anchors can be used to achieve both structural enhancement and economic construction in earth retaining or supporting structures.

Study on Prediction Method for Spring-Induced Tension Responses of TLP (Springing을 고려한 TLP의 장력 예측 기법 연구)

  • Kim, Taeyoung;Kim, Yonghwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.396-403
    • /
    • 2014
  • This paper considered the prediction of the tension force in the design of a TLP tendon, particularly focusing on the springing problem. Springing is an important parameter that exerts a large tension in special cases. It is a nonlinear phenomenon and requires the 2nd-order wave loads to solve. In this paper, a new prediction method for springing and the resultant extreme tension on the tendon of a TLP is introduced. Using the 2nd-order response function computed using the commercial program WADAM, the probability density function of the 2nd-order tension is obtained from an eigenvalue analysis using a quadratic transfer function and sea spectra. A new method is then suggested to predict the extreme tension loads with respect to the number of occurrences. It is shown that the PDF suggested in this study properly predicts the extreme tension in comparison with the time histories of the 2nd-order tension. The expected tension force is larger than that from a linear analysis in the same time windows. This supports the use of the present method to predict the tension due to springing.

Analysis of Tension Mask Thermal Deformations under Localized Heating and Prediction of Electron Beam Landing Shifts (국부가열에 의한 Tension Mask 의 열변형 해석 및 전자빔의 오착 예측)

  • Shin, Woon-Seo;You, Se-Jonn;Jang, Bo-Woong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.138-148
    • /
    • 1999
  • Thermal deformations of tension mask under localized heating are analyzed using finite element method and electron beam landing shifts are predicted by the analysis results. In CRT, electron beam landing shifts due to thermal deformations of the tension mask make the color purity of screen worse. In order to get the final results of thermal deformations, firstly the tension processes of the mask and following welding processes between the tensional mask and rail must be analyzed sequentially. And then, nonlinear transient thermo-elastic finite element analysis is performed on every part inside CRT including tension mask, wherein thermal radiation is a main heat transfer mechanism. Because the tension mask has numerous slits, the effective thermal conductivity and effective and effective elastic modulus is calculated, and the tension mask is modeled as a shell without slits. From the displacement results of tension mask, electron beam landing shifts is calculated directly. Experiments are performed to confirm our analysis results. Temperature distributions and beam landing shifts of tension mask are measured and the results are in good agreement with those of analyses.

  • PDF

A study on the Mathematical Tension Model for a Non-contact Transfer of a Moving Web in R2R e-Printing Systems (롤투롤 시스템에서의 비 접촉 이송 시스템을 위한 수학적 장력 모델에 관한 연구)

  • Lee, Chang-Woo;Kim, Ho-Joon;Kang, Hyun-Kyoo;Shin, Kee-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.894-898
    • /
    • 2009
  • In a post printing section of roll to roll printing systems, scratch problem is the major defects. The functional qualities such as conductivity, mobility could deteriorate because of the scratch defect. In general, the scratch of the printed pattern on the flexible substrate was induced from a contact between rolls and printed pattern in the post printing section. In this paper, for non-contacting transfer of a moving web, a mathematical tension model has been developed considering strain due to air floatation and the proposed mode has been validated by numerical simulation. Additionally, the correlation between floatation height and speed compensation to control the tension and register are investigated. On the basis of the proposed model, a guide line of speed control in R2R printing system is presented to guarantee the non-contact between rolls and R2R printed pattern on the flexible substrate.

The Simulations on the Formability of AZ31 Magnesium Alloy Sheet in Warm Deep Drawing (AZ31 마그네슘합금판의 온간 디프드로잉 성형성해석)

  • Kang, Dae-Min;Hwang, Jong-Kwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.52-58
    • /
    • 2004
  • The material used is a commercial magnesium based alloy AZ31(Mg-3Al-1Zn)sheet with a thickness of 1.0mm. Uniaxial tension tests at warm temperature were carried out to investigate the material characteristics of K, m, and n. A warm drawing process with a local heating and cooling technique was developed to improve formability in this study with results of uniaxial tension tests because it is very difficult for Mg alloy to deform at room temperature by the conventional method. The die and blank holder were heated up, while the punch was water-cooled during deformation. FE simulations considering heat transfer were executed with Mg alloy to investigate the Improvement of deep drawability. For the assessment of improvement those were compare with the results of no considering heat transfer and room temperature.

  • PDF