• Title/Summary/Keyword: Tension clamp

Search Result 27, Processing Time 0.02 seconds

Transient Receptor Potential C4/5 Like Channel Is Involved in Stretch-Induced Spontaneous Uterine Contraction of Pregnant Rat

  • Chung, Seungsoo;Kim, Young-Hwan;Joeng, Ji-Hyun;Ahn, Duck-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.503-508
    • /
    • 2014
  • Spontaneous myometrial contraction (SMC) in pregnant uterus is greatly related with gestational age and growing in frequency and amplitude toward the end of gestation to initiate labor. But, an accurate mechanism has not been elucidated. In human and rat uterus, all TRPCs except TRPC2 are expressed in pregnant myometrium and among them, TRPC4 are predominant throughout gestation, suggesting a possible role in regulation of SMC. Therefore, we investigated whether the TRP channel may be involved SMC evoked by mechanical stretch in pregnant myometrial strips of rat using isometric tension measurement and patch-clamp technique. In the present results, hypoosmotic cell swelling activated a potent outward rectifying current in G protein-dependent manner in rat pregnant myocyte. The current was significantly potentiated by $1{\mu}M$ lanthanides (a potent TRPC4/5 stimulator) and suppressed by $10{\mu}M$ 2-APB (TRPC4-7 inhibitor). In addition, in isometric tension experiment, SMC which was evoked by passive stretch was greatly potentiated by lanthanide ($1{\mu}M$) and suppressed by 2-APB ($10{\mu}M$), suggesting a possible involvement of TRPC4/5 channel in regulation of SMC in pregnant myometrium. These results provide a possible cellular mechanism for regulation of SMC during pregnancy and provide basic information for developing a new agent for treatment of premature labor.

Analysis of the Major Design Parameters of a Pantograph-Railway Catenary System for Improving the Current Collection Quality (집전성능 향상을 위한 팬터그래프-전차선의 주요 설계 파라미터분석)

  • Cho, Yong Hyeon
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • Stiffness variations and wave propagation/reflection in railway catenaries are the primary sources of contact loss between a pantograph and a railway contact wire. This paper analyzes which design parameter is more important for 200km/h conventional rail and 300km/h high-speed rail, in order to effectively reduce the contact loss. For the high-speed rail, the wave propagation and reflection in the overhead contact lines are more influential than the stiffness variation over a span. When the high-speed rail needs to speed-up, it is necessary to develop higher strength contact wires in order to increase the wave propagation speed. In addition, the dropper clamp mass should be reduced in order to alleviate the wave reflection. However, it is noted that the increase in the tension to a messenger wire could deteriorate the current collection quality, which contrasts with expectations. For the 200km/h conventional rail, the stiffness variation over a span is more influential than the wave propagation and reflection. Therefore, shortening span length, increasing the tension in the contact wire and optimizing the location of the droppers are recommended for a smoother stiffness variation over the span.

The Effect of Carbon Monoxide on Contraction, Cytosolic $Ca^{2+}$ Level and Ionic Currents in Guinea Pig Ileal Smooth Muscle

  • Kwon, Seong-Chun;Chung, Seung-Soo;Kim, Yun-Suk;Nam, Taick-Sang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.479-486
    • /
    • 2000
  • The aim of this study was to clarify the mechanism of the inhibitory action of carbon monoxide (CO) on contraction, by measuring cytosolic $Ca^{2+}$ level $([Ca^{2+}]_i)$ and ionic currents in guinea-pig ileum. CO (10%) inhibited 40 mM KCl-induced contraction and this effect was blocked by ODQ $(1\;{\mu}M),$ a soluble guanylyl cyclase (sGC) inhibitor. CO inhibited the 40 mM KCl-induced contraction without changing $[Ca^{2+}]_i.$ Cumulative addition of KCl induced a graded increase in $[Ca^{2+}]_i$ and muscle tension. In the presence of CO, cumulative addition of KCl induced smaller contraction than in the absence of CO. On the other hand, the increase in $[Ca^{2+}]_i$ induced by cumulative addition of KCl was only slightly decreased in the presence of CO, and the $[Ca^{2+}]_i-tension$ relationship shifted downwards. Using the patch clamp technique with a holding potential of -60 mV, we found that CO had little effect on the peak Ba currents $(I_{Ba})$ when voltage was stepped from -60 mV to 0 mV. In addition, CO showed no effect on the depolarization-activated outward $K^+$ currents in the all potential ranges. We conclude that CO inhibits smooth muscle contraction mainly by decreasing the $Ca^{2+}$ sensitivity of contractile elements via a cGMP-dependent pathway, not by involving L-type $Ca^{2+}$ and outward-potassium currents in guinea-pig ileum.

  • PDF

The alterations of $Ca^{2+}$-activated $K^+$ channels in coronary artery during cardiac hypertrophy

  • Kim, Nari;Lee, Sang-Kyeong;Chung, Joon-Yong;Seog, Dae-Hyun;Kim, Euiyong;Jin Han
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.23-23
    • /
    • 2003
  • It has been suggested that the impairment of smooth muscle cell (SMC) function by alterations in the $Ca^{2+}$-activated $K^{+}$ ( $K_{Ca}$ ) channels accounts for the reduction in coronary reserve during left ventricular hypertrophy (LVH). However, this hypothesis has not been fully investigated. The main goal of this study was to assess whether the properties of $K_{Ca}$ channels in coronary SMCs were altered during LVH. New Zealand white rabbits (0.8-1.0 kg) and Sprague-Dawley rats (300-400 g) were randomly selected to receive either an injection of isoproterenol (300 $\mu\textrm{g}$/kg body weight) or an equal volume of 0.9% saline (1 mL/kg body weight). The animals developed LVH 10 days after injection. In patch-clamp experiments, the unitary current amplitude and open probability for the $K_{Ca}$ channels were significantly reduced in LVH patches compared with control patches. The concentration-response curve of the $K_{Ca}$ channel to [C $a^{2+}$]$_{i}$ was shifted to the right. Inhibition of the $K_{Ca}$ channels with TEA was more pronounced in LVH cells than in the control cells. The whole-cell currents of $K_{Ca}$ channels were reduced during LVH. Western blot analysis indicated no differences in $K_{Ca}$ channel expression between the control and LVH coronary SM membranes. In contraction experiments, the effect of a high $K^{+}$concentration on the resting tension of the LVH coronary artery was greater than on that of the control. The effect of TEA on the resting tension of the LVH coronary artery was reduced as compared with the effect on the control. Our findings imply a novel mechanism for reduced coronary reserve during LVH.ing LVH.

  • PDF

Effect of Dopamine on the $Ca^{2+}\;-dependent\;K^+\;currents$ in Isolated Single Gastric Myocytes of the Guinea-pig

  • Rhee, Poong-Lyul;Lee, Sang-Jin;Kim, Sung-Joon;So, In-Suk;Hwang, Sang-Ik;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.27 no.2
    • /
    • pp.139-150
    • /
    • 1993
  • We have reported that dopamine potentiates spontaneous contractions dose-dependently in guinea-pig antral circular muscle strips (Hwang et al, 1991). To clarify the underlying excitatory mechanism of dopamine on the gastric smooth muscle, the effects of dopamine on voltage-dependent $Ca^{2+}\;currents\;and\;Ca^{2+}\;-dependent\;K^+\;currents$ were observed in enzymatically dispersed guinea-pig gastric myocytes using the whole-cell voltage-clamp technique. Experiments were also done using isometric tension recording and conventional intracellular microelectrode techniques. 1) The effect of dopamine on the spontaneous contraction of antral circular muscle strips of the guinea-pig was excitatory in a dose-dependent manner, and was blocked by phentolamine, an ${\alpha}-adrenoceptor$ blocker. 2) The slow waves were not changed by dopamine. 3) The voltage-operated inward $Ca^{2+}$ current was not influenced by dopamine. 4) The $Ca^{2+}\;-dependent\;K^+$ outward current, which might reflect the changes of intracellular calcium concentration, was enhanced by dopamine. This effect was abolished by phentolamine. 5) The enhancing effect of dopamine on the $Ca^{2+}\;-dependent\;K^+$ current disappeared with heparin which is known to block the action of $InsP_3$. From these results, it is suggested that dopamine acts via $InsP_3-mediated\;Ca^{2+}$ mobilization from intracellular stores and such action potentiates the spontaneous contraction of guinea-pig gastric smooth muscle.

  • PDF

Properties of stretch-activated $K^+$ channels in an G292 osteoblast-like cell (G292 세포에서 세포막 신장으로 활성화되는 $K^+$통로의 특성)

  • Lee, Sang-Gook;Jung, Dong-Keun;Suh, Duk-Joon;Park, Soo-Byung
    • The korean journal of orthodontics
    • /
    • v.30 no.2 s.79
    • /
    • pp.197-204
    • /
    • 2000
  • [$K^+$]-selective ion channels were studied in excised inside-out membrane patches from human osteoblast-like cells (G292). Three classes of $K^+$channels were present and could be distinguished on the basis of conductance. Conductances were $270\pm27\;pS,\;113\pm12\;pS,\;48\pm8\;pS$ according to their approximate conductances in symmetrical 140 mM KCl saline at holding potential of -80 mV It was found that the small conductance (48 pS) $K^+$channel activation was dependent on membrane voltage. In current-voltage relationship, small conductance $K^+$channel showed outward rectification, and it was activated by the positive potential inside the membrane. In recordings, single channel currents were activayed by a negative pressure outside the membrane. The membrane pressure increased $P_{open}$ of the $K^+$ channel in a pressure-dependent manner. In the excised-patch clamp recordings, G292 osteoblast-like cells have been shown to contain three types of $K^+$ channels. Only the small conductance (48 pS) $K^+$channel is sensitive to the membrane stretch. These findings suggest that a hyperpolarizing current, mediated in part by this channel, may be associated with early events during the mechanical loading of the osteoblast. In G292 osteoblast-like cells, $K^+$channel is sensitive to membrane tension, and may represent a unique adaptation of the bone cell membrane to mechanical stress.

  • PDF

The Effect of NO Donor on Contraction, Cytosolic $Ca^{2+}$ Level and Ionic Currents in Guinea-pig Ileal Smooth Muscle

  • Kwon, Seong-Chun;Park, Ki-Young;Ahn, Duck-Sun;Lee, Young-Ho;Kang, Bok-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.1
    • /
    • pp.33-40
    • /
    • 2000
  • This study was designed to clarify the mechanism of the inhibitory action of a nitric oxide (NO) donor, 3-morpholino-sydnonimine (SIN-1), on contraction, cytosolic $Ca^{2+}$ level $([Ca^{2+}]_i)$ and ionic currents in guinea-pig ileum. SIN-1 $(0.01{\sim}100\;{\mu}M)$ inhibited 25 mM KCl- or histamine $(10\;{\mu}M)-induced$ contraction in a concentration-dependent manner. SIN-1 reduced both the 25 mM KCl- and the histamine-stimulated increases in muscle tension in parallel with decreased $[Ca^{2+}]_i.$ Using the patch clamp technique with a holding potential of -60 mV, SIN-1 $(10\;{\mu}M)$ decreased peak Ba currents $(I_{Ba})$ by $30.9{\pm}5.4%$ (n=6) when voltage was stepped from -60 mV to +10 mV and this effect was blocked by ODQ $(1\;{\mu}M),$ a soluble guanylyl cyclase inhibitor. Cu/Zn SOD (100 U/ml), the free radical scavenger, had little effect on basal $I_{Ba},$ and SIN-1 $(10\;{\mu}M)$ inhibited peak $I_{Ba}$ by $32.4{\pm}5.8%$ (n=5) in the presence of Cu/Zn SOD. In a cell clamped at a holding-potential of -40 mV, application of $10\;{\mu}M$ histamine induced an inward current. The histamine-induced inward current was markedly and reversibly inhibited by $10\;{\mu}M$ SIN-1, and this effect was abolished by ODQ $(1\;{\mu}M).$ In addition, SIN-1 markedly increased the depolarization-activated outward $K^+$ currents in the all potential ranges. We concluded that SIN-1 inhibits smooth muscle contraction mainly by decreasing $[Ca^{2+}]_i$ resulted from the inhibition of L-type $Ca^{2+}$ channels and the inhibition of nonselective cation currents and/or by the activation of $K^+$ currents via a cGMP-dependent pathway.

  • PDF