• Title/Summary/Keyword: Tensile strength test

Search Result 2,682, Processing Time 0.028 seconds

Comparative Study on the Bond Strength between Direct Tensile Test and Indirect Tensile Test for Bonded Concrete Overlay (직접인장 및 간접인장 실험방법에 따른 접착식 콘크리트 덧씌우기의 부착강도 비교 고찰)

  • Kim, Young Kyu;Lee, Seung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1153-1163
    • /
    • 2013
  • Bonded concrete overlay is a favorable maintenance method since the material properties are similar to existing concrete pavements. In addition, bonded concrete overlay has advantage of structural performance based on being bonded together, both for the overlay layer and the existing pavement which perform as one monolithic layer. Therefore, it is important to have a suitable bond strength criteria for long term performance of bonded concrete overlay. This study aimed to investigate the affecting of bond strength on various bond characteristics, and to compare the bond strength between direct tensile test and indirect tensile test due to various conditions such as overlay materials, compressive and flexure strength of existing pavement, and deterioration status of existing pavement. As a result of this study, bond strength occurred by both of direct and indirect tensile test due to monotonic load is highly correlated such as coefficient of determination of 0.75 and P-value of 0.002. However, bond strength by indirect tensile test was relatively higher than bond strength by direct tensile test. It was known that correlation between direct and indirect tensile test was possible to use the characteristics analysis of bond fatigue behavior based on bond strength due to cyclic load which can simulate real field behavior of bonded concrete overlay.

A Study on the Evaluation Method for optimal Tensile NOL Ring Composite Specimen Manufactured by Filament Winding Process-to manufacture and elvaluate the composite turbine blade of wind generator system- (필라멘트 와인딩 공법으로 제조된 복합재료 NOL Ring 시험편의 최적 인장강도의 평가법에 관한 연구 -풍력발전용 복합재료 터빈블레이드 제조 및 평가를 목적으로-)

  • 배창원;권순철;임철문;엄수현;김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.87-94
    • /
    • 2001
  • Filament winding process is a comparatively simple operation in which continuous reinforcements in the form of roving are wound over a rotating mandrel. And now it is well established as a versatile method for storage tanks and pipe for the chemical and other industries. In this study, tensile strength of a filament wound ring specimens were evaluated by split disk test fixture and dress disk test fixture. The results obtained from experiments were compared with the theoretical values obtained by the rule of mixture. And the purpose of this paper is to suggest an appropriate test method for the evaluation of tensile properties of filament wound structures. The tensile strength of a ring specimens tested by the dress disk test showed better agreement with the theoretical values than of a ring specimen tested by the split disk test because the stress concentration in edges of s split disk test fixture is more severe than the that of dress disk test fixture. The results showed that the tensile strength of a ring specimen was influenced by the geometry of test fixture, the continuity of fibers, fiber-tension, fiber-end and stress concentration in specimen.

  • PDF

A Study on the Evaluation Method for Tensile Ring Specimen Manufactured by Filament Winding Process (필라멘트 와인딩 공법으로 제조된 링 시험편의 인장강도 평가법에 관한 연구)

  • 배창원;권순철;임철문;엄수현;김윤해
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.15-20
    • /
    • 2000
  • Filament winding process is a comparatively simple operation in which continuous reinforcements in the form of roving are wound over a rotating mandrel. And it is now well established as a versatile method for storage tanks and pipe for the chemical and other industries. In this study, tensile strength of a filament wound ring specimens were evaluated by split disk test fixture and dress disk test fixture. The results obtained from experiments were compared with the theoretical values obtained by the rule of mixtures in composites . And the purpose of this paper is the suggestion of an appropriate test method for the evaluation of tensile properties of filament wound structures. The tensile strength of a ring specimen tested by the dress disk test showed better agreement with the theoretical values than that of a ring specimen tested by the split disk test because the stress concentration in edges of a split disk test fixture is more severe than that of dress disk test fixture. The results showed that the tensile strength of a ring specimen was influenced by the geometry of test fixture, the continuity of fibers, fiber-tension, fiber-end and stress concentration in specimen.

  • PDF

A Study on the Optimum Evaluation Method for Tensile NOL Ring Specimen Manufactured by Filament Winding Process (Filament winding에 의해 제조된 복합재료 NOL RING시험편의 최적 인장강도 평가법에 관한 연구)

  • 권순철;임철문;배창원;엄수현;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.203-207
    • /
    • 2000
  • Filament Winding Process is a comparatively simple operation in which continuous reinforcements in the form of roving are wound over a rotating mandrel. And now well established as a versatile method for storage tanks and pipe for the chemical and other industries . In this study, tensile strength of a filament wound ring specimens were evaluated by split disk test fixture and dress disk test fixture , The results obtained from experiments were compared with the theoretical values obtained by the rule of mixtures. And the purpose of this paper is the suggestion of an appropriate test method for the evaluation of tensile properties of filament wound structures .The tensile strength of a ring specimen tested by the dress disk test showed better agreement with the theoretical values than of a ring specimen tested by the split disk test because the stress concentration in edges of a split disk test fixture is more severe than that of dress disk test fixture. The results showed that the tensile strength of a ring specimen was influenced by the geometry of test fixture, the continuity of fibers, fiber-tension, fiber-end and stress concentration in specimen.

  • PDF

Parametric Study on Test Method for Pull-off Strength of FRP Composite Material used in Strengthening RC Members (FRP 복합체의 콘크리트에 대한 접착강도 시험방법 변수 연구)

  • Choi, Ki-Sun;You, Young-Chan;Lee, Han-Seung;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.222-225
    • /
    • 2006
  • Pull-off test is widely used to evaluate bond performance between concrete and FRP composite. However, reliability of experiment result declines due to many difference between test methods of each national standards. This study analyzed problems of various existing test methods for pull-off test and suggested standardized test method. In addition, since tensile strength of concrete is smaller than bond strength of epoxy resin, maximum bond strength of epoxy resin shall be limited within tensile strength of concrete. Alternative testing method, therefore, which decrease FRP adhesion areas than concrete adhesion areas is suggested to widen test range of bond strength in pull-off test. In the experimental results, bond performance can be estimated up to two times of tensile strength of concrete by reducing FRP adhesion areas by 1/3.

  • PDF

The Relationship between Splitting Tensile Strength and Compressive Strength of Fiber Reinforced Concretes

  • Choi, Yeol;Kang, Moon-Myung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.155-161
    • /
    • 2003
  • This paper presents experimental and analytical results of glass fiber-reinforced concrete (GFRC) and polypropylene fiber-reinforced concrete (PERC) to investigate the relationship between tensile strength and compressive strength based on the split cylinder test (ASTM C496) and compressive strength test (ASTM C39). Experimental studies were performed on cylinder specimens having 150 mm in diameter an 300 mm in height with two different fiber contents (1.0 and 1.5% by volume fraction) at ages of 7, 28 and 90 days. A total of 90 cylinder specimens were tested including specimens made of the plain concrete. The experimental data have been used to obtain the relationship between tensile strength and compressive strength. A representative equation is proposed for the relationship between tensile strength and compressive strength of fiber-reinforced concrete (FRC) including glass and polypropylene fibers. There is a good agreement between the average experimental results and those calculated values from the proposed equation.

Shear Transfer Strength Evaluation for Ultra-High Performance Fiber Reinforced Concrete (강섬유 보강 초고성능 콘크리트의 전단 전달 모델)

  • Lee, Ji-Hyung;Hong, Sung-Gul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.69-77
    • /
    • 2015
  • Ultra High Performance Fiber Reinforced Concrete (UHPFRC) has a outstanding tensile hardening behaviour after a crack develops, which gives ductility to structures. Existing shear strength model for fiber reinforced concrete is entirely based on crack opening behavior(mode I) which comes from flexural-shear failure, not considering shear-slip behavior(mode II). To find out the mode I and mode II behavior on a crack in UHPFRC simultaneously, maximum shear strength of cracked UHPFRC is investigated from twenty-four push-off test results. The shear stress on a crack is derived as variable of initial crack width and fiber volume ratio. Test results show that shear slippage is proportional to crack opening, which leads to relationship between shear transfer strength and crack width. Based on the test results a hypothesis is proposed for the physical mechanics of shear transfer in UHPFRC by tensile hardening behavior in stead of aggregate interlocking in reinforced concrete. Shear transfer strength based on tensile hardening behavior in UHPFRC is suggested and this suggestion was verified by comparing direct tensile test results and push-off test results.

Strengthening Effects of Epoxy Mortar Systems on Reinforced Concrete Beams by Flexural Tensile Strength (변성에폭시 모르터 휨인장강도가 단면증대 보에 미치는 영향)

  • 류현희;신영수;정혜교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.787-790
    • /
    • 2000
  • This paper presents an experimental study on flexural behavior of structural member enlarged with epoxy mortar system. The main test variable is flexural tensile strength. A series of 4 test beams was tested to shoe the corresponding effect of each variables on maximum load capacity, load-deflection and moment-curvature relationship, interface behavior and failure mode. The results show that the flexural tensile strength of retrofitted materials have no relation load-deflection, but to load-strain, and failure mode.

  • PDF

The Improvement of Biaxial Flexure Test (BFT) Method for Determination of the Biaxial Flexure Tensile Strength of Concrete (콘크리트 이방향 휨인장강도 결정을 위한 이방향 휨인장강도 시험법 개선)

  • Kim, Jihwan;Zi, Goangseup;Oh, Hongseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5A
    • /
    • pp.389-397
    • /
    • 2011
  • In this study, an experiment for the biaxial behavior of specimens was carried out to identify whether the isotropic flexure tensile stress of concrete in the BFT method is feasible. Another experiment for the improvement of the BFT method was conducted to ensure the isotropic flexure tensile stress of BFT specimens during the test. In addition, the biaxial flexure strength of concrete given by the improved BFT method was compared to the uniaxial flexure strength by the four-point bending test. Test results show that the isotropic flexure tensile stress of concrete using the BFT method was highly influenced by the surface conditions and warping of the specimens. Using improved BFT method, we could obtained the isotropic flexure tensile stress of concretes. The biaxial flexure strength of BFT was about 32% greater than the uniaxial flexure strength of the four-point bending test. In the experiment, with the smaller scatter, the improved BFT method gave a reliable biaxial flexure strength like the four-point bending test.

A Study on Tensile Strength Dependent on Variation of Infill Pattern and Density of PLA+ Material Using 3D Printing (3D 프린팅을 이용한 P LA+ 소재의 채움 패턴 및 밀도 변화에 따른 인장강도 연구)

  • Na, D.H.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.281-289
    • /
    • 2022
  • Presently, 3D printers manufactured by material extrusion are economical and easy to use, so they are being used in various fields. However, this study conducted a tensile test on the infill pattern and density of the PLA+ material, due to the limitations of long printing time as well as low mechanical strength. The infill area for the infill density change was measured, using a vision-measuring machine for four infill patterns (concentric, zigzag, honeycomb, and cross) in which the nozzle path was the same for each layer. The tensile strength/weight[MPa/g] and tensile strength/printing time[MPa/min] of the tensile specimens were analyzed. In this study, efficient infill density and patterns are suggested, for cost reduction and productivity improvement. Consequently, it was confirmed that the infill area and infill percentage of the four patterns, were not constant according to the infill pattern. And the tensile strength of the infill density 40% of the honeycomb pattern and infill density 20% of the cross pattern, tended to highly consider the weight and printing time. Honeycomb and cross patterns could reduce the weight of the tensile specimen by 19.11%, 28.07%, as well as the printing time by 29.56%, 52.25%. Tensile strength was high in the order of concentric, zigzag, honeycomb, and cross patterns, considering the weight and printing time.