• Title/Summary/Keyword: Tensile strength test

Search Result 2,696, Processing Time 0.031 seconds

Comparative Study on Test Methods for Mechanical Properties of Structural Adhesives Used in FRP Strengthening (구조보강용 FRP 함침·접착수지의 역학적 특성 분석을 위한 시험방법 비교 연구)

  • You, Young Chan;Choi, Ki Sun;Kim, Keung Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.103-112
    • /
    • 2008
  • Pull-off test is generally used to evaluate bond strength of FRP composite with concrete at job site. However, some damages on FRP composites can not be avoided during pull-off test and moreover test range of pull-off strength is limited by maximum tensile strength of concrete. Accordingly, it is required to set-up a test method that can evaluate mechanical properties of structural adhesive indirectly prior to pull-off test. In this study, the standard test methods for structural adhesive which can simply evaluate mechanical performance of adhesive were suggested through comparative experiments from each different standard in various countries. Particularly, gluing thickness of adhesive in tensile lap-shear tests, the section dimension of compression and bending test specimens become unified, and standard test specimen size is achieved by test results.

Development of Failure Criterion of Hot Mix Asphalt Using Triaxial Shear Strength Test (삼축압축시험을 이용한 아스팔트 혼합물의 파괴기준 개발)

  • Kim, Seong Kyum;Lee, Kwan Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.947-954
    • /
    • 2014
  • In general, Fracture of the material is not occurring of the maximum normal stress or the maximum shear stress failure in the state. Maximum normal stress and maximum shear stress in the state of Critical coupling from being destroyed based on the Mohr-Coulomb theory. Couple of different mixtures, including permeable asphalt pavement, SMA and dense-graded asphalt mixture, were used for compression triaxial test at $45^{\circ}C$ and $60^{\circ}C$. Mohr-Coulomb theory to the analysis of compression triaxial test result of the internal friction angle $38.9^{\circ}{\sim}46.9^{\circ}$ measured somewhat irregularly, but in the case of cohesion, depending on whether the temperature and immersion of the specimen appeared differently. In addition, Indirect tensile test and compression triaxial test of the asphalt mixture to determine the correlation between compression triaxial test results assessed as cohesion and internal friction angle calculated using the theoretical Indirect tensile strength and measured indirectly tensile strength were analyzed. The Measured & Predicted IDT St values tended to be proportional.

Development of Uniaxial Tensile Test Method to Evaluate Material Property of Tungsten Carbide-Cobalt Alloys for Cold Forging Dies (냉간단조 금형 WC-Co합금의 인장시험방법 개발 및 물성평가)

  • Kwon, I.W.;Seo, Y.H.;Jung, K.H.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.370-378
    • /
    • 2018
  • Cold forging, carried out at room temperature, leads to high dimensional accuracy and excellent surface integrity as compared to other forging methods such as warm and hot forgings. In the cold forging process, WC-Co (Tungsten Carbide-Cobalt) alloy is the mainly used material as a core dies because of its superior hardness and strength as compared to other structural materials. For cold forging, die life is the most significant factor because it is directly related to the manufacturing cost due to periodic die replacement in mass production. To investigate die life of WC-Co alloy for cold forging, mechanical properties such as strength and fatigue are essentially necessary. Generally, uniaxial tensile test and fatigue test are the most efficient and simplest testing method. However, uniaxial tension is not efficiently application to WC-Co alloy because of its sensitivity to alignment of the specimen due to its brittleness and difficulty in thread machining. In this study, shape of specimen, tools, and testing methods, which are appropriate for uniaxial tensile test for WC-Co alloy, are proposed. The test results such as Young's modulus, tensile strength and stress-strain curves are compared to those in previous literature to validate the proposed testing methods. Based on the validation of test results it was concluded that the newly developed testing method is applicable to other cemented carbides like Titanium carbides with high strength and brittleness, and also can be utilized to carry out fatigue tests for further investigation on die life of cold forging.

Tensile Strength Characteristics of Steel Cord and PVA Hybrid Fiber Reinforced Cement-Based Composites (Steel Cord와 PVA 혼합섬유 보강 고인성 시멘트 복합체의 인장강도 특성)

  • Yun Hyun Do;Yang Il Seung;Han Byung Chan;Hiroshi Fukuyama;Cheon Esther;Moon Youn Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.18-21
    • /
    • 2004
  • This paper discusses how steel cord and PVA hybrid fibers enhance the performance of high performance fiber reinforced cementitious composites (HPRFCC) in terms of elastic limit, strain hardening response and post peak of the composites. The effect of microfiber(PVA) blending ratio is presented. For this purpose flexure, direct tension and split tension tests were conducted. It was found that HFRCC specimen shows multiple cracking in the area subjected to the greatest bending tensile stress. Uniaxial tensile test confirms the range of tensile strain capacity from 0.5 to $1.5\%$ when hybrid fiber is used. The cyclic loading test results identified a unique unloading and reloading response for this ductile composite. Cyclic loading in tension appears not to affect the tensile response of the material if the uniaxial compressive strength during loading is not exceeded.

  • PDF

A Study on the Corrosion and Degradation of Boiler Tubes Steel in Fossil Power Plant

  • Baik, Young Min;Jeong, Hee Don;Kweon, Young Gak
    • Corrosion Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.123-128
    • /
    • 2006
  • It was analyzed the causes of boiler tube rupture due to a degradation and corrosion on the boiler tubes in fossil power plant. The experiments were carried out among samples taken from the operating facilities. The result were analyzed based on experimental results from mechanical strength, microstructure observation, and hardness measurement in order to determine the cause of local rupture on boiler tubes. In general, 2.25Cr-1Mo steel generates carbides, it is coarsened, its ductility and strength abruptly decreased as degradation is in progress, In order to confirm this phenomenon, we observed changes of the mount of Cr and Mo of carbide by carrying out EDX chemical composition analysis. The amount of Cr and Mo in the degraded material or service exposed material gradually increased the amount of Mo but initially they were almost maintained at the same amount. Furthermore, we observed that the carbide become coarsened both in the grain and at the grain boundary. Tensile test was carried out to measure a material hardness and to recognize a drop-off of hardness. Overall result for tensile strength and hardness turned out to be lower than new material and mechanical strength and hardness was degraded as the material degradation was in progress.

A Study on Mechanical Properties and Friction Weldability of SKH51 and SM45C (SKH51/SM45C의 마찰용접특성에 관한 연구)

  • Lee, Se-Gyoung;Min, Byung-Hoon;Choi, Su-Hyun;Shim, Do-Ki;Min, Taeg-Ki
    • Journal of Welding and Joining
    • /
    • v.25 no.6
    • /
    • pp.53-58
    • /
    • 2007
  • The present study examined the mechanical properties of the friction welding of shaft made of SKH51 and SM45C, of which the diameter is 12mm. Friction welding was done at welding conditions of 2,000rpm, friction pressure of 104MPa, upset pressure of 134MPa, friction time of 0.5sec to 2.5sec by increasing 0.5sec, upset time of 2 seconds. Under these conditions, a tensile test, a bending test, a shear test, a hardness test and a microstructure of weld interface were studied. When the friction time was 1.0 second under the conditions, the maximum tensile strength of the friction weld observed to be 963MPa, which is 89% the tensile strength of SKH51 base metal and 101% of the tensile strength of SM45C base metal. When the friction time was 1.0 seconds under the conditions, the maximum bending strength of the friction weld happened to be 1,647MPa, which is 78% the bending strength of SKH51 base metal(2,113MPa) and 87% of the bending strength of SM45C base metal(1,889MPa). When the friction time was 1.0 seconds under conditions, the maximum shear strength of the friction weld was observed to be 755MPa, which is 92% the shear strength of SKH51 base metal and 122% of the shear strength of SM45C base metal. According to the hardness test, the hardness distribution of the weld interface varied from Hv282 to Hv327. HAZ was formed from the weld interface to 1.2mm of SKH51 and 1.6mm of SM45C. Upon examination it was found that the microstructure became finer along with increase of friction revolution radius.

Tensile Strength Characteristics of ETFE Roof Material in Large Membrane Structuresb (초대형 막구조물 지붕용 ETFE 필름 막재의 인장특성)

  • Lee, Seung-Jae;Lee, So-Ra
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.51-58
    • /
    • 2010
  • ETFE is the abbreviation of Ethylen Tetra Fluoro Etylene, a sort of colorless and transparent granules. The advantage ETFE film has daylight transmission and chemical the resistance and The thickness of ETFE film is used to from $50{\mu}m$ to $300{\mu}m$ and tensile strength of ETFE film changes from 40MPa to 60MPa and the tensile strain at break can get to about 300-400%. In this paper, ETFE film carried out the tensile proprieties, such as the tensile strain at break, the tensile strength are examined.

  • PDF

Degradation Characteristics of Filament-Winding-Laminated Composites Under Accelerated Environmental Test (필라멘트 와인딩 복합적층재의 환경가속 노화시험 평가)

  • Kim, Duck-Jae;Yun, Young-Ju;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.295-303
    • /
    • 2007
  • Degradation behaviors of filament-winded composites have been evaluated under the accelerated environmental test of high temperature, water immersion and thermal impact conditions. Two kinds of laminated composites coated by an urethane resin have been used: carbon-fiber reinforced epoxy(T700/Epon-826, CFRP) and glass-fiber reinforced phenolic (E-glass/phenolic, GFRP). For tensile strength of $0^{\circ}$ composites, CFRP showed little degradation while GFRP did high reduction by 25% under the influence of high temperature and water However for water-immersed $90^{\circ}$ composites tensile strength of both CFRP and GFRP showed high reduction. Bending strength and modulus of $90^{\circ}$ composites were largely reduced in water-immersion as well as high temperature environment. Urethane coating on the composite surface improved the bending properties by 20%, however hardly showed such improvement for water-immersed $90^{\circ}$ composites. In case of shear strength and modulus, both CFRP and GFRP showed high reduction by water-Immersion test but did a slight increase by high temperature and thermal impact conditions.

A Study on Mechanical Properties Improvement of Halogen-free Flame Retardant Compounds by Nanoclay Addition (나노클레이 첨가에 따른 할로겐프리 난연컴파운드의 기계적 특성에 관한 연구)

  • Hwang, Chan-Yun;Yang, Jong-Seok;Sung, Baek-Yong;Kim, Ji-Yeon;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.126-130
    • /
    • 2015
  • In this study, some materials are organized and experimented with variables to obtain the optimum mix proportion for the mechanical property of halogen free flame resistance compound with varying addition of nano clay. Tensile strength, density and stiffness are tested in the room temperature. In this study, unlike existing layered structure, nano clay with tabular structure is used and sufficient stiffness, strength, thermal stability and gas block capability can be achieved with small amount of addition. Tensile strength and elongation test show high rupture strength only in specimens with compatibilizing agents while density test shows average measurement in all the specimens except T-9. It was confirmed that the measurement value according to the additives in compatibilizing agent or in nano clay of hardness test represents similarly.

Tensile Strengths of Demineralized Dentin derived from Self-Priming Adhesives (Self-Priming Adhesives를 침투시킨 탈회 상아질의 인장강도)

  • Lee, Hye-Yun;Yoon, Mi-Ran;Lee, Rin;Lee, Jeong;Lee, Kwang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.2
    • /
    • pp.181-191
    • /
    • 2006
  • The objectives of this study were to evaluate the tensile strength of resin-infiltrated demineralized dentin according to the demineralization time, and to evaluate the tensile strength of hybrid layer that is formed by infiltrating different priming adhesives or primer/adhesive into demineralizd dentin matrix. Seventy five hour-glass shaped dentin specimens were prepared in mid-coronal dentin from extracted human molars. Thirty specimens were distributed into three groups according to demineralization time - 2 hours, 4 hours and 8 hours. Each specimen was placed in primer/adhesive of All-Bond 2 for 5 hours of infiltration. Another forty-five specimens of them were demineralized in 37% phosphoric acid for 4 hours. They were randomly assigned to three experimental groups - AB, SB and OS - to designate All-Bond 2, Single Bond and One-Step. Each specimen was placed in one of three different adhesives for 5 hours of infiltration. The specimens were visible light-cured for 5 minutes, and then stored for 24 hours in distilled water at $37^{\circ}C$. After that, microtensile bond strength for each specimen was measured, and the fractured surfaces were then observed by SEM. The data were statistically analysed by one-way ANOVA and Tukey's multiple comparison test and Bonferroni's multiple comparison test. The results were as follows; 1. Tensile strength of the group demineralized for 4 hours was significantly higher than that of groups demineralized for 2 hours and 8 hours (P < .01). 3. Tensile strength of the AB group was significantly higher than that of the SB group and OS group (P < .01).