• Title/Summary/Keyword: Tensile residual stress

Search Result 404, Processing Time 0.026 seconds

A Fundamental Study on the Fracture Mechanism of Steel Plates under Completely Alternating Load (완전교번하중하(完全交番荷重下)에서의 강판(鋼板)의 파괴기구(破壞機構)에 관한 기차적(基磋的) 연구(研究))

  • Chang, Dong Il;Chung, Yeong Wha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.1-13
    • /
    • 1982
  • Transition process of plastic region. displacements, stresses and strains ahead the flaw tips were analysed by the finite element method on the steel plate with the circular hole and the one with the elliptical hole under completely alternating load (repetition of tensile loading, unloading and compressive loading). As the results, the followings were obtained. Transition process of elastic failure (yielding) region was estimated. From this the tendency was confirmed that the fracture would be initiated from ahead the flaw tip, and propagated along the $45^{\circ}$ direction. The fundamental data available in estimating the stress intensity factor that was considered as the core in analysing the fracture mechanism of steel plates were obtained. It was indicated that when unloading after tension the effect of compressive loading, and even the compressive reyield, was occured ahead the flaw tip. Similarly it was indicated that when unloading after compression the effect of tensile loading, and even the tensile reyield, was occured ahead the flaw tip. It was considered that these phenomena were occured because the unloading effect was constrained by the residual strains when unloading. It was considered that the fatigue phenomenon was occured ahead, the flaw tip by repetition of tensile yield, the above compressive reyield, compressive yeild and the above tensile reyield. In addition, the tendency was confirmed that the fracture ahead the flaw tip was occured as the flaw was changed from the circular hole to the elliptical hole and became to be the crack lastly.

  • PDF

A Study on the Resistance and Crack Propagation of ITO/PET Sheet with 20 nm Thick ITO Film (20 nm 두께의 ITO층이 코팅된 ITO/PET Sheet의 저항 및 균열형성 특성 연구)

  • Kim, Jin-Yeol;Hong, Sun-Ig
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.86-93
    • /
    • 2009
  • The crack formation and the resistance of ITO film on PET substrate with a thickness of 20 nm were investigated as a function of strain. The onset strain for the increase of resistance increased with increasing strain rate, suggesting the crack initiation is dependent on the strain rate. Electrical resistance increased at the strain of 1.6% at the strain rates below $10^{-4}/sec$ while it increased at ${\sim}2%$ at the strain rates above $10^{-3}/sec$. The critical strain at which the cracks were formed is close to the proportional limit. Upon loading, the initial cracks perpendicular to the tensile axis were observed and propagated the whole sample width with increasing strain. The spacing between horizontal cracks is thought to be determined by the fracture strength and the interfacial strength between ITO and PET. The crack density increased with increasing strain. However, the effect of the strain rate on the crack density was less pronounced in ITO/PET with 20 nm ITO thickness than ITO/PET with 125 nm ITO thickness, the strength of ITO film is thought to increase as the thickness on ITO film decreases. The absence of cracks on ITO film at a strain as close as 1.5% can be attributed to the compressive residual stress of ITO film which was developed during cooling after the coating process. The higher critical strain for the onset of the resistance increase and the crack initiation of ITO/PET with a thinner ITO film (20 nm) can be linked with the higher strength of the thinner ITO film.

A Study on the Strength Evaluation of Unidirectional Carbon Fiber Reinforced Plastics by Nondestructive Method (일방성(一方性) 복함재료(複合材料)의 파괴거동(破壞擧動) 및 강도평가(强度評價)에 관(關)한 연구(硏究))

  • Chang, H.K.;Lee, J.S.;Cho, K.S.;Lee, S.H.;Park, E.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.7 no.2
    • /
    • pp.42-47
    • /
    • 1988
  • The off-axis tensile strength of the unidirectional carbon fiber reinforced plastic and the residual strength of impact damaged CFRP were measured and compared with the stress wave factor (SWF) of the specimens. The SWF values were measured to be decreased with the strength reduction in both cases and found to be useful for the nondestructive strength evaluation of unidirectional CFRP. The failure behaviour of the unidirectional CFRP during off-axis tensile testing was also monitored by acoustic emission(AE) method. The AE energy release showed the characteristic feature depending on the off-axis angle and this result was analyzed to be caused by the difference of the expected failure mode depending on the off-axis angle. The failure mode of CFRP was found to be analyzed by investigation of the peak amplitude distribution of AE.

  • PDF

The study on the manufacturing intermediary materials for the carbon nanofiber reinforced Cu matrix noncomposite (일방향 탄소나노섬유 강화 Cu 기지 나노복합재료용 중간재 제조에 관한 연구)

  • 백영민;이상관;엄문광
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.46-49
    • /
    • 2003
  • Cu have been widely used as signal transmission materials for electrical electronic components owing to its high electrical conductivity. However, it's size have been limited to small ones due to its poor mechanical properties, Until now, strengthening of the copper at toy was obtained either by the solid solution and precipitation hardening by adding alloy elements or the work hardening by deformation process. Adding the at toy elements lead to reduction of electrical conductivity. In this aspect, if carbon nanofiber is used as reinforcement which have outstanding mechanical strength and electric conductivity, it is possible to develope Cu matrix nanocomposite having almost no loss of electric conductivity. It is expected to be innovative in electric conduct ing material market. The unidirectional alignment of carbon nanofiber is the most challenging task developing the copper matrix composites of high strength and electric conductivity In this study, the unidirectional alignment of carbon nanofibers which is used reinforced material are controlled by drawing process in order to manufacture the intermediary materials for the carbon nanofiber reinforced Cu matrix nanocomposite and align mechanism as well as optimized drawing process parameters are verified via experiments and numerical analysis. The materials used in this study were pure copper and the nanofibers of 150nm in diameter and of $10~20\mu\textrm{m}$ In length. The materials have been tested and the tensile strength was 75MPa with the elongation of 44% for the copper it is assumed that carbon nanofiber behave like porous elasto-plastic materials. Compaction test was conducted to obtain constitutive properties of carbon nanofiber. Optimal parameter for drawing process was obtained by experiments and numerical analysis considering the various drawing angles, reduction areas, friction coefficient, etc Lower reduction areas provides the less rupture of cu tube is not iced during the drawing process. Optimal die angle was between 5 degree and 12 degree. Relative density of carbon nanofiber embedded in the copper tube is higher as drawing diameter decrease and compressive residual stress is occurred in the copper tube. Carbon nanofibers are moved to the reverse drawing direct ion via shear force caused by deformation of the copper tube and alined to the drawing direction.

  • PDF

A Numerical Study on the Behavior of Steel Fiber Reinforced Shotcrete in Consideration of Flexural Toughness (휨인성을 고려한 강섬유보강 숏크리트 거동의 수치해석적 연구)

  • Cho, Byoung-Ouk;You, Kwang-Ho;Kim, Su-Man;Lim, Doo-Chul;Lee, Sang-Don;Park, Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.411-427
    • /
    • 2007
  • Reliability in tunnel analysis is necessary to accomplish technically sound design and economical construction. For this, a thorough understanding of the construction procedure including the ground-support interaction has to be obtained. This paper describes a proper modelling technique to simulate the behavior of the steel fiber reinforced shotcrete (SFRS) which maintain the supporting capability in post-failure regime. The additional supporting effect of the steel support was also verified by 3-D analyses and a new load distribution factor were proposed. The use of the plastic moment limit (PML) alone can eliminate the occurrence of the awkwardly high tensile stress in the shotcrete and can successfully model the post-peak ductile behavior of the SFRS. But with this method, moment is limited whenever the stress caused by moment reaches tensile strength of the shotcrete irrespective of the stress by axial force. Therefore, it was necessary to find a more comprehensive method which can reflect the influence of the moment and axial force. This can be accomplished by the proper use of "liner element" which is the built-in model in FLAC. In this model, the peak and residual strength as well as the uniaxial compressive strength of the SFRS can be specified. Analyses were conducted with these two models on the 2-lane road tunnels excavated in class IV and V rock mass and results were compared with the conventional elastic beam model. Results showed that both models can reflect the fracture toughness of the SFRS which could not be accomplished by the elastic beam model.

The Application of Narrow-Gap Welding Process for SA 106 Gr.C in Nuclear Power Plant (원전 배관용 SA 106 Gr.C의 협개자동용접 적용에 관한 연구)

  • Woo, Seung-Wan;Kwon, Jae-Do;Lee, Choon-Yeol;Kang, Suk-Chull;Shin, Ho-Sang
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.96-101
    • /
    • 2004
  • Conventionally, SMAW process was applied to join pipes of RCL, which caused lot of loss in time and cost due to excessive heat input and defects in joining section. Recently, narrow-gap welding(NGW) process was introduced to overcome the disadvantages of SMAW. However, the application of NGW to nuclear power plant is not yet common because safety of NGW process is not proven. In present paper, the welded coupons are made of carbon steel. They are manufactured under different processes; general welding(GW), post-weld heat treatment(PWHT) after GW, repair welding after GW and PWHT with repair welding after GW in carbon steel. Performed are various mechanical tests investigation of microstructure, hardness test, tensile test at room and high temperature, bending test, impact test and J-R test. It is verified that the mechanical properties of carbon steel are greatly changed after repair welding process due to applied heat flux, and that the effect of PWHT is beneficial.

  • PDF

Influence of Residual Bending Fatigue Strength on Impact Damage of CFRP Composites (CFRP 적층판의 충격손상이 잔류 굽힘 피로강도에 미치는 영향)

  • Yang, Yong Jun;Yang, In Young
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.7-12
    • /
    • 2015
  • CFRP composites are used as primary structural members in various industrial fields because their specific strength and specific stiffness are excellent in comparison to conventional metals. Their usage is expanding to high added-value industrial fields because they are more than 50% lighter than metals, and have excellent heat resistance and wear resistance. However, when CFRP composites suffer impact damage, destruction of fiber and interface delamination occur. This causes an unexpected deterioration of strength, and for this reason it is very difficult to ensure the reliability of the excellent mechanical properties. Therefore, for the destruction mechanism in bending with impact damage, this study investigated the reinforcement data regarding various external loads by identifying the consequential strength deterioration. Specimens were damaged by impact with a steel ball propelled by air pressure. Decrease in bending strength caused by the tension and compression of the impact side, and depending on the lamination direction of fiber and interface inside the specimen. From the bending test it was found that the bending strength reduced when the impact energy increased. Especially in the case of compression on the impact side, as tensile stress occurred at the damage starting point, causing rapid failure and a substantially reduced failure strength.

Study on Halogen Free Low Smoke Polyolefin (할로겐이 없는 저연성 폴리올레핀에 관한 연구)

  • Kim, Young-Doo;Chung, Kwang-Soo;Kim, Tae-Ho
    • Elastomers and Composites
    • /
    • v.37 no.3
    • /
    • pp.177-182
    • /
    • 2002
  • For low-smoke-type polyolefin compound, LDPE, EVA, and EEA as base resin, magnesium trihydrate, alumina trihydrate, and red phosphorous as flame retardant and MAH type compatibilizer were applied. The amount of each component was changed to find out optimum composition. Mechanical properties were obtained by tensile test and residual stress after aging and flame retardancy was evaluated by smoke density, LOI(Limit Oxygen Index), and UL-94 test. SEM was used for the investigation or morphology and halogen contents were obtained by measuring the amount of HCI. Two kinds of halogen free compositions for flame retardant and low smote resin were found and it is expected to be applied for various purposes.

An Experimental study on Improvement of Mechanical Press-Joining Strength of the Spin Drum Seaming Division in Washing Machine (스핀드럼 시밍부의 기계적 프레스 접합강도 향상에 관한 실험적 연구)

  • Kim, E.S.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.127-131
    • /
    • 2006
  • There are being a lot of studies for achievement of high speed Dehydration, high-strength and Lightweight of washing machine in the latest washing machine business. It is essential that Press-joining Strength of Spin Drum Seaming division is improved .to attain that target. Generally, we are using Mechanical press-joining by Seaming and T.I.G (Tungsten Inert Gas) welding among part joint method. Mechanical press-joining method that is mainly using for Stainless Steel (STS430) Drum have lots of merit that consumption of energy is low more than welding and production costs cut down and generation of the corrosion is solved by removing weld zone defect and materials having different properties are enable to join without special equipment. But, it is difficult to realize joint strength required at high speed operation because joint strength of mechanical press-joining method is low remarkably in comparison with welding. Also, there are a lot of analysis difficulties and very limited research is under way due to the dynamic factor such as multistage plastic working, elastic recovery, residual stress etc. The results of this study show optimal joining condition for mechanical press-joining by performing lots of tensile joining strength test with various specimen under multi-change of important design factor such as seaming width, bead area and bead depth etc.

  • PDF

A Study on Selective Laser Melting Process Considering Phase Transformation for Ti-6Al-4V (Ti-6Al-4V 합금에서 상 변화를 고려한 Selective Laser Melting 프로세스 연구)

  • Song, Seong-Il;Park, Joo-Heon;Jin, Byeong-Ju;Lee, Kyoung-Don
    • Journal of Korea Foundry Society
    • /
    • v.39 no.6
    • /
    • pp.110-115
    • /
    • 2019
  • Recently, various studies have been conducted on additive manufacturing technology developed using metal materials. In this study, a numerical analysis was introduced to analyze the effects of the thermal deformation and residual stress which arise during the SLM (selective laser melting) manufacturing process. A phase-transformation mechanism is implemented with the use of the Ti-6Al-4V material, in which a solid-state phase transformation (SSPT) can be induced during a numerical analysis. In this case, the phase of the Ti-6Al-4V material changes from a powder to a solid state and then to the Martensite phase in sequence during heating and cooling steps. The numerical analysis during the SLM process was verified by comparing the results of tensile tests with those from the numerical analysis based on the SSPT material properties.